

Application of a Fluorescent Substrate / Inside-Out Transporter Vesicle Assay for Identifying Inhibitors of MRP Transport

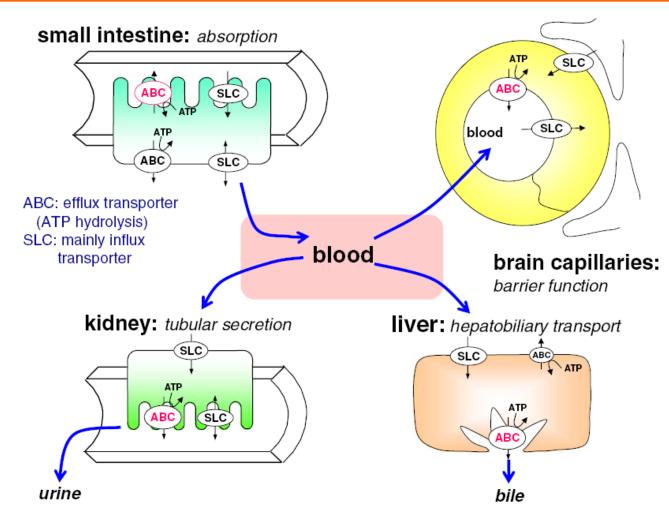
Na Li, PhD

BD Biosciences

October 20, 2010

BD Gentest[™] Transporter Seminar Series

- Today's seminar is the first in a series of transporter seminars that BD will present through 2010 and 2011.
- The upcoming titles and dates are as follows:
 - Application of the colorimetric ATPase assay for accessing ABC transporter inhibition and stimulation: December 8, 2010
 - Application of inside-out vesicles for accessing ABC transporter inhibition and direct transport: February 9, 2011
 - Application of Transportocytes for identifying inhibitors and substrates of SLC transporters: April 7, 2011
 - Drug transport efflux and uptake assays using plated and suspension hepatocytes: May 5, 2011



Today's Topics

- Overview of the important role of drug transporters in drug pharmacokinetics
- Overview of in vitro transporter models
- Application of a fluorescent substrate in characterizing transporter inhibitors using a vesicle assay
 - Advantages
 - Assay procedure
 - Application in characterizing drug interactions with MRP transporters

Transporters Across Human Tissues

Transporters in Drug Pharmacokinetics and **Toxicity**

- Systemic exposure: Oral bioavailability and Organ Disposition
 - Drug absorption in small intestine (BCRP, MDR1/P-gp) (Topotecan, sulphasalazine)
- SLC transporter involved DDI
 - OATP1B1: increase in statin AUC when co-administrated with cyclosporine
- MDR1/P-gp involved DDI
 - Digoxin clearance reduced when co-administrated with Quinidine, Ritonavir, and other P-gp inhibitors
- Inhibition of MRP2/BSEP induced toxicity
 - Cholestasis
 - Hyperbilirubinemia

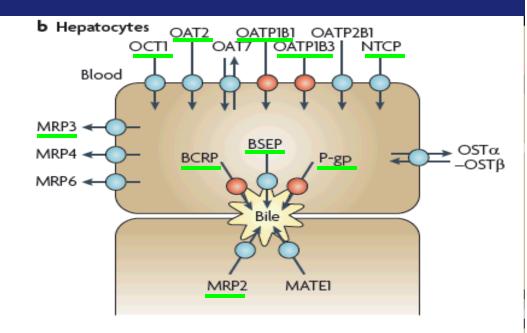
Transporter-Mediated Drug Clearance – Challenge in Drug Discovery

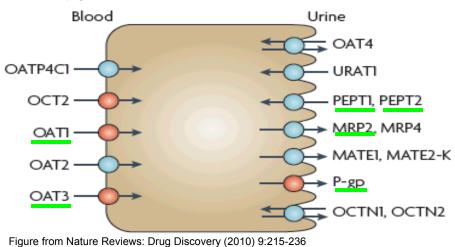
Extensive P450 or Phase II enzyme mediated drug metabolism, e.g. High drug clearance Rational compound structure optimization is needed

Optimal P450 or Phase II enzyme mediated drug metabolism, e.g. moderate drug clearance DDI potential, metabolites, interspecies scaling and IVIVC are assessable

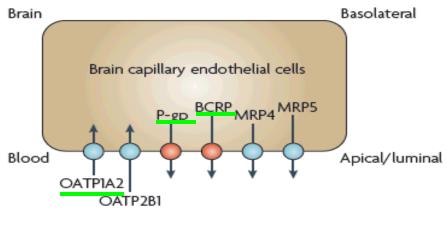
Confidence in prediction




Metabolic stability unknown routes of elimination (all transporter mediated) DDI, interspecies scaling and IVIVC are difficult to assess


Selected Human Transporters

a Intestinal epithelia



c Kidney proximal tubules

d Blood-brain barrier

7

Recombinant transporters available from BD

Drug Transporters of Emerging Clinical Importance in the Absorption and Disposition of Drugs

SLC transporters		ABC transporters	
Transporters/alias	Tissue Distribution	Transporters/alias	Organ/cells
OATP1B1/OATP-C, OATP2 (SLCO1B1)	Liver	MDR1/P-gp (ABCB1)	Intestine, Kidney, liver, brain
OATP1B3/OATP-8 (SLCO1B3)	Liver	BCRP/MXR (ABCG2)	Intestine, liver, kidney, brain, placenta, breast
OAT1 (SLC22A6)	Kidney, placenta	BSEP (ABCB11)	Liver
OAT3 (SLC22A8)	Kidney, liver, brain	MRP2/cMOAT (ABCC2)	Liver, kidney, intestine
OCT2 (SLC22A2)	Kidney, brain	MRP3 (ABCC3)	Liver, intestine
OATP1A2/OATP-A (SLCO1A2)	Brain	MRP4 (ABCC4)	Kidney, liver,
OATP2B1/OATP-B (SLCO2B1)	Liver	MDR3 (ABCB4)	Liver
OCT1 (SLC22A1)	Liver, intestine		
PEPT1 (SLC15A1)	Intestine, kidney		
PEPT2 (SLC15A2)	Kidney, lung		
MATE1 (SLC47A1)	Kidney, liver, skeletal muscle		
MATE2-K (SLC47A2)	Kidney		

Overview of In Vitro Transporter Models

SLC transporters:

- Expressed in Xenopus oocyte system (Transportocytes)
 - OATP, OCT, OAT, and NTCP
 - Uptake assays for both radiolabeled and non-radiolabeled compounds
- SLC transporters overexpressed in mammalian cell lines
- Hepatocyte suspension assay using oil-filtration method

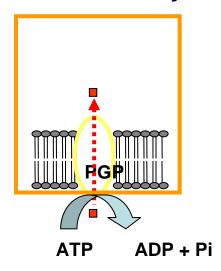
ABC transporters:

- Inside-out vesicles:
 - MRP, BCRP, and BSEP
 - Uptake assays for both radiolabeled and non-radiolabeled compounds
- Membranes:
 - P-gp, MRP, and BCRP
 - ATPase assay
- Polarized cell line expressing human P-gp, MRP2 or BCRP
- Sandwich cultured hepatocytes-ABC transporter on canalicular membrane

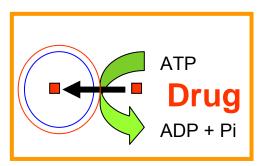
BD Gentest ABC Transporter Membranes / Vesicles

Membranes for ATPase Assay

- Human MDR1 (P-gp)
- Mouse Mdr1a/1b
- Rat Mdr1a/1b
- Cyno Mdr1
- Rhesus Mdr1
- Beagle Dog Mdr1
- Human MRP1
- Human MRP2
- Human MRP3
- Rat Mrp1
- Rat Mrp2
- Human BCRP (Arg482)
- Mouse Bcrp
- Rat Bcrp


Inside-out Vesicles for Uptake Assay

- Human MRP1
- Human MRP2
- Human MRP3
- Rat Mrp1
- Rat Mrp2
- Human BSEP
- Rat Bsep
- Human BCRP (Arg482)
- Rat Bcrp
- Mouse Bcrp


ABC Transporter Assays

ATPase Assay

- BD Gentest ABC transporter membrane
- Indirect Assay: measures the ability of a drug-stimulated ATP hydrolysis (substrates and inhibitors)
- Rapid, High-throughput
- Colorimetric assay (any compound)
- No extractions/separations/transfers

Vesicles Uptake Assay

- BD Gentest ABC transporter Vesicles
- Direct Assay: Measurement of transportermediated uptake of drugs into vesicles (Substrates and inhibitors)
- Can be high throughput: using <u>96-well plate</u> and <u>cell harvester / vacuum manifold</u>
- Assays developed for both radiolabeled and non-radiolabeled compounds

Transporter Assay Kits

- ATPase Kit (cat. no 459006)
 - One kit supports all BD ABC transporter membrane ATPase assays
 - 5 plates of 96-well plate assay
 - Probe substrates for P-gp, MRP1, MRP2, MRP3 and BCRP.
 - Colorimetric reagents in single use aliquot
 - 2 Year shelf-life when store at -20°C
 - Reagents only
- MRP/BCRP Vesicle Kit (cat. no. 459010)
 - One kit supports all BD MRP and BCRP transporter vesicle assays
 - 200 assays
 - Probe substrate for MRP1, MRP2, MRP3 and BCRP
 - Fluorescent substrate (CDCF) for MRP2 and MRP3
 - 2 Year shelf-life
 - Reagents only
- BSEP Vesicle Kit (cat. no 459011)
 - Supports BSEP transporter vesicle assays
 - 200 assays
 - Probe substrate for BSEP
 - 2 Year shelf-life
 - Reagents only
- 10 X Wash Buffer for MRP/BCRP Vesicle Assay (cat. no 450600)
- 10 X Wash Buffer for BSEP Vesicle Assay (cat. no 450601)

Vesicle Uptake Assays

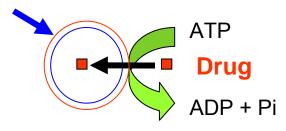
Using Radiolabeled Compounds in Vesicle Uptake Assays

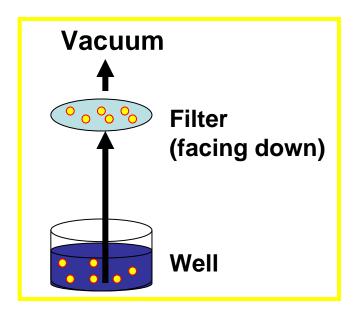
Equipment

 Vacuum manifold/cell harvester and scintillation counter (if 96-well glass fiber filter plate is used, MicroBeta scintillation counter, Perkin Elmer is needed)

Advantages

- Extraction step in sample preparation is not required
- Recovery is not an issue
- Fast


Disadvantages


- Radiolabeled compounds are not always available
- Waste removal and radiation license requirements associated with radiolabeled compound
- Expensive

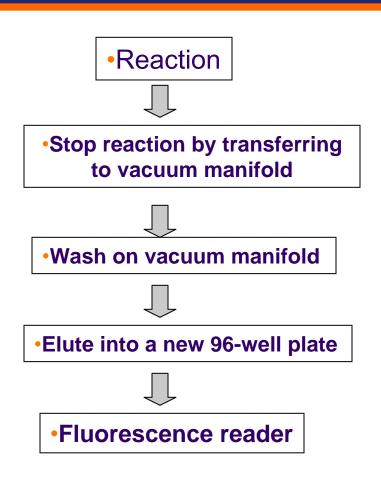
Vesicle Uptake Assay Using Cell Harvester – Radiolabeled Compound

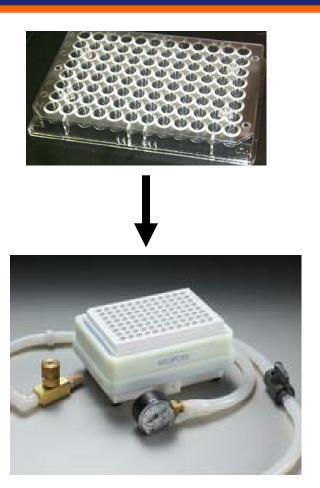
Inside-out Vesicles

Equipment and Materials

Filter Plate

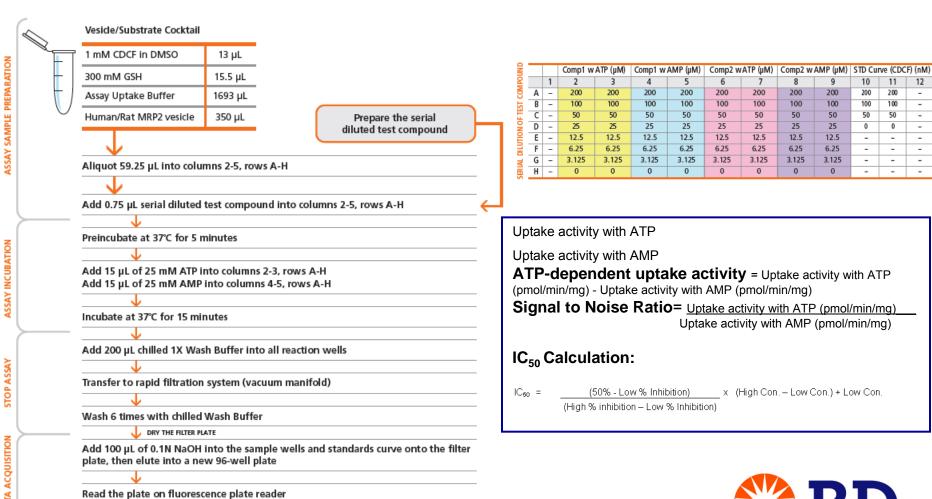
Microplate Scintillation Counter




Using a Fluorescent Substrate in Vesicle Uptake Assays

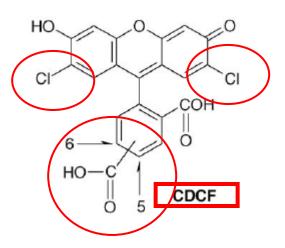
- Equipment: Vacuum manifold and spectrophotometer
- Compared with the physiologically relevant, high-affinity substrate, LTC₄, CDCF is:
 - More robust MRP2 substrate, with similar kinetics as LTC₄
 - Optimal for high throughput screening of compound interactions with MRP2
- No need for radiolabeled compound
- Requires a simple elution step in sample preparation
- Less expensive, more convenient, higher S/N ratio compared to using radio-labeled compound

Vesicle Uptake Assay Using Vacuum Manifold – Fluorescent Compound



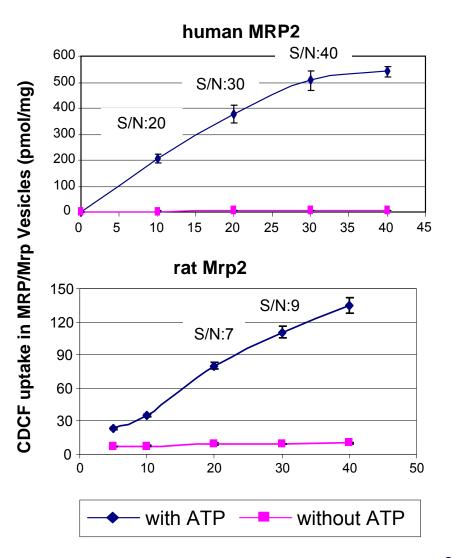
This approach can be used for non-radiolabeled compounds, subject to LC-MS/MS measurements

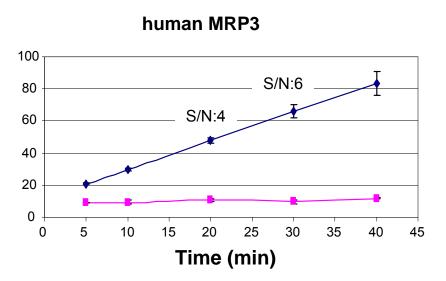
Overview of Assay Procedure – Example of IC₅₀ Study using CDCF as MRP2 Substrate



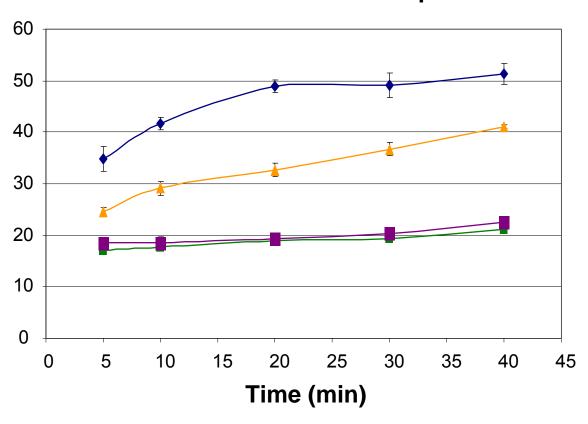
Structure of 5(6)-Carboxy-2,'7'-Dichlorofluorescein (CDCF)

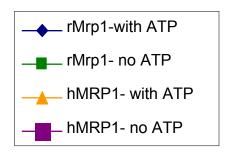
Fluorescent


Ex: 485 nm


Em: 538 nm

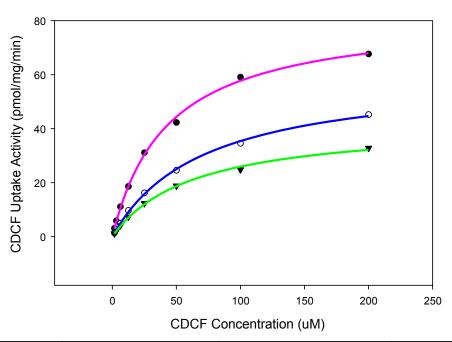
Time-Dependent Uptake of CDCF in MRP2/MRP3 Vesicle




ATP-dependent uptake of CDCF is linear for at least 30 minutes for hMRP2/rMrp2, hMRP3 membrane vesicles.

CDCF is not Transported by hMRP1/rMrp1

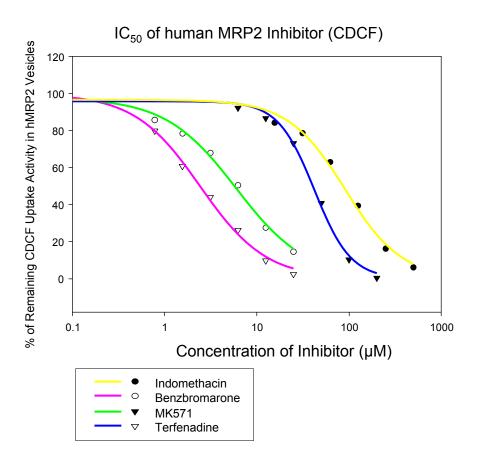
human MRP1/Rat Mrp1

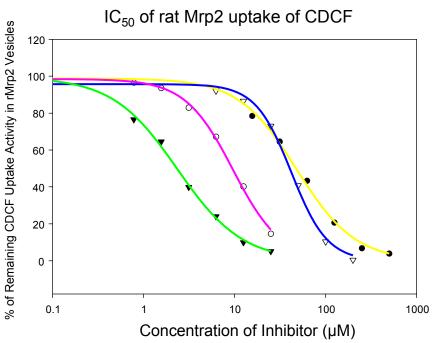


No time-dependent increase was observed in ATP-dependent uptake of CDCF in hMRP1/rMrp1 membrane vesicles.

Kinetic Study of CDCF in Human MRP

Km of CDCF in MRP2 and MRP3





Vesicles		alues M)		^{max} ng/min)	Average <i>K_m</i>	Average V _{max}
hMRP2	23.4	22.5	186	245	22.95	215.5
hMRP3	49.3	63	29.2	42.3	56.15	35.75
rMRP2	57.5	71.1	54	60.6	64.3	57.3

MRP2/Mrp2 IC₅₀ Assay Using CDCF as a Substrate

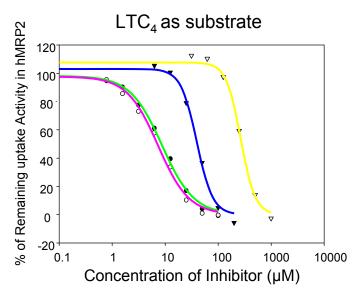
Comparison of Inhibitory Effects of MRP2 Modulators on CDCF Transport in Human MRP2 and rat Mrp2

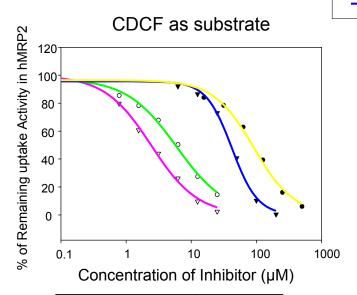
Human MRP2

Test compounds	ΙC ₅₀ (μΜ)		Average IC ₅₀ (µM)
	Day 1	Day 2	
MK571	5.9	6.4	6.2
Terfenadine	48.6	42.9	45.8
Benzbromarone	2.6	3.9	3.3
Indomethacin	84.6	96.9	90.8

Rat MRP2

Test compounds	ΙC ₅₀ (μΜ)		Average IC ₅₀ (μΜ)
	Day 1	Day 2	
MK571	2.5	2.3	2.4
Terfenadine	42.9	49.7	46.3
Benzbromarone	10.2	13.8	12
Indomethacin	52.7	54.9	53.8


- Four test MRP2 modulators can inhibit ATP-dependent CDCF transport in both human and rat MRP2/Mrp2 vesicles.
- The rank order of the inhibitory potency of four test modulators is slightly different between human and rat.
- Benzbromarone and MK571 are more potent inhibitors than Indomethacin and Terfenadine for both human and rat MRP2/Mrp2.


CDCF is an Alternative to LTC₄ as an MRP2 Substrate

Like LTC₄ (Leukotriene C₄), CDCF is transported by MRP2/Mrp2 in time-dependent, concentration dependent manner following Michaelis-Menten Kinetics.

Comparison of IC₅₀ values of human MRP2 modulators.

Test compounds	IC ₅₀ (μΜ)	
Benzbromarone	7.8	
MK571	9.2	
Terfenadine	41.6	
Indomethacin	281.5	

Test compounds	IC ₅₀ (μΜ)
Benzbromarone	3.3
MK571	6.2
Terfenadine	45.8
Indomethacin	90.8

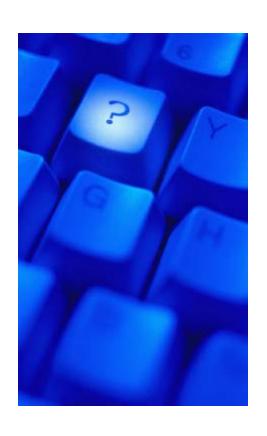
Indomethacin Benzbromarone

MK571 Terfenadine

Summary

- Awareness is increasing on the importance of drug transporters in drug pharmacokinetics, safety and efficacy profiles.
- Vesicle uptake assays are direct assays to determine transporter substrates or inhibitors.
- CDCF is a more robust and convenient tool to characterize drug interactions with MRP transporters vs radiolabeled substrates.

Summary of BD Biosciences In Vitro Transporter Models


ABC Transporters

- Inside-out vesicles
 - Uptake and inhibitory assays
 - MRP/BCRP vesicle kit (459010); BSEP vesicle kit (459011)
 - 10X wash buffer for MRP/BCRP vesicle assay (450600)
 - 10X wash buffer for BSEP vesicle assay (450601)
- Membranes
 - ATPase assay
 - ATPase assay kit (459006)

SLC Transporters

- Expressed in Xenopus oocyte system (transportocytes)
 - Uptake and inhibitory assays
- Hepatocyte suspension assay using oil-filtration method
 - Uptake and inhibitory assays

Questions?

Contact information:

Na Li, PhD

e-mail: na_li@bd.com

Technical Support:

tel: 877.232.8995

e-mail: labware@bd.com

bdbiosciences.com/webinars

For research use only. Not intended for use in diagnostic or therapeutic procedures.

BD, BD Logo, and all other trademarks are property of Becton, Dickinson and Company. ©2010 BD

