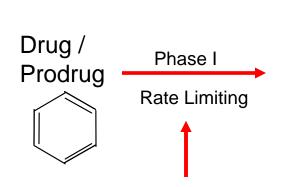
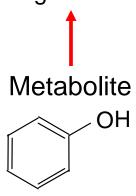


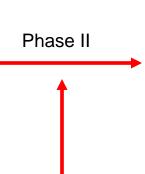
### Biotransformation of Drug Candidates by Non-CYP Metabolic Pathways

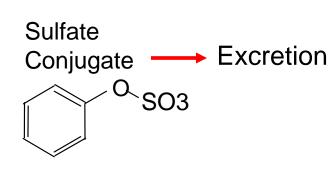
Jie Wang

June 19, 2012


### **Biotransformation in Drug Metabolism**


- Drug metabolism
  - Main function is to facilitate removal of compounds from the organism, thereby preventing unwanted accumulation of foreign compounds orendogenous compounds to reach potentially toxic levels
- Functional group biotransformations:
  - Phase I metabolism reaction: functionalization
    - Oxidations: Introduce a new polar functional group to the parent drug
    - Reductions: modify an existing functional group to be more polar
    - Hydrolyses: Unmask existing polar functional group
    - Most common functional groups: -OH, -NH-, -COOH.
  - Phase II metabolism reaction: conjugation
    - Glucuronidation, sulfonation



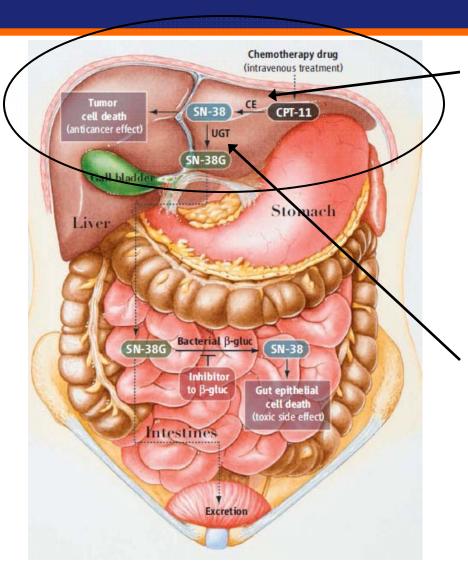


### Phase I and Phase II Enzymes

- Can be active or inactive at target site
- Toxic
- Mutagen or Carcinogen










- Expose functional group that can be conjugated
- Small increase in hydrophilicity
- Include: CYPs, AO, CESs,

- Large increase in hydrophilicity
- Conjugates are generally inactive
- Include: UGTs, SULTs

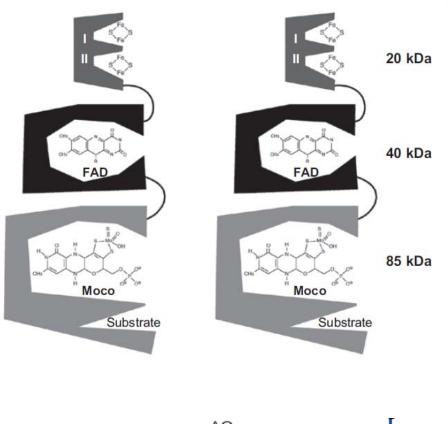


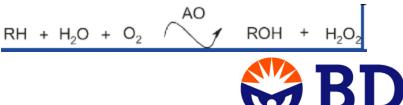
#### Case Study (CPT-11): Non-CYP pathways



- CES converts prodrug (CPT-11) to active drug (SN-38)
- SN-38 is active against many cancers but has a doselimiting toxicity effect
- UGTs convert SN-38 to SN-38 Glucuronide, an inactive compound that is excreted into the GI tract




### Webinar Agenda


- Aldehyde Oxidase
  - Background
  - Native AO in Human Liver Cytosol, and Human Hepatocytes
- Carboxylesterase
- UDP-Glucuronosyltransferase



### Aldehyde Oxidase Background

- Aldehyde Oxidase (AO) is a molybdo-flavoenzyme present in the cytosolic compartment of many tissues in various animal species, including humans.
- AO Oxidize a wide range of aldehydes and heterocyclic compounds.
  - Increasing importance in drug metabolism, primarily due to the recent growth in the # of aromatic aza-heterocycle moieties that are found in many drug leads.



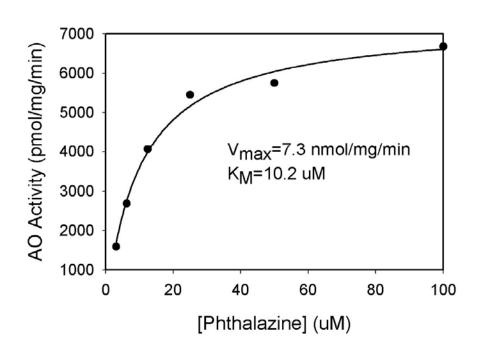



### The Importance of AO Metabolism

- AO: present in the cytosolic fractions, thus, standard metabolic stability studies using Human Liver Microsomes do not capture AO-mediated metabolism.
  - That the AO pathway has been overlooked leads to clinical failures, either due to toxicological outcomes (Diamond et al., 2010), or to higher-than-predicted clearance in human, yielding unacceptable pharmacokinetic properties (e.g. FK3453 from Astellas Pharma).
  - David Pryde et al (2010) in Pfizer has proposed Decision Tree to guide decisionmaking during the screening of potential AO substrates.
- There is limited information about the ability to scale in vitro clearance for compounds that are substrate of AO for accurate human predictions.
  - First paper to correlate in vitro metabolism data with in vivo pharmacokinetic data using liver S9/cytosol (Zientek et al, 2010), no explanation for the underestimation of the in vitro-scaled intrinsic clearance comparing to the in vivo values.
  - The liability of AO causes concern. A stable and reproducible source of AO is needed.



### **AO Activity in Human Liver Cytosol (HLC)**

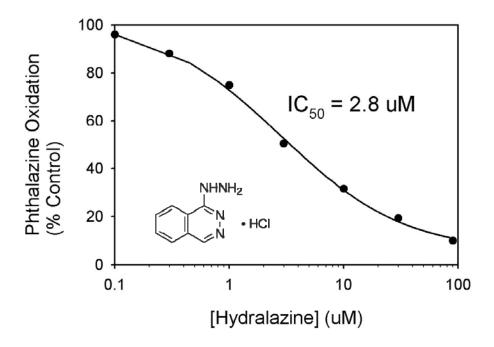

#### Aldehyde Oxidase in Human Liver Cytosol



- Phthalazine is probe substrate of AO
- Conclusion:
  - AO activity in HLC is approximately linear to 2 min
  - AO activity in HLC is 5.9 nmol/mg/min (2 min incubation).
- Assay Conditions:
  - 0.5 mg/ml BD Gentest<sup>™</sup>
     Human Liver Cytosol 150
     donor pool (452115) --- in
     linear range
  - Substrate: 100 µM Phthalazine
  - Metabolite: Phthalazone

### **Km – Phthalazine - HLC**

#### Km determination - HLC

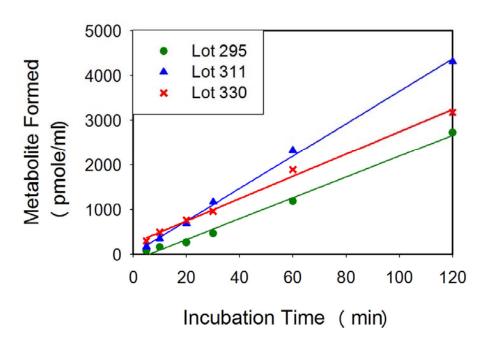



- Conclusion: The Km for probe substrate
   Phthalazine is 10.2 µM, matches publication:
   Km=8.0 µM by Jeff Jones, 2011 DMD
- Assay Conditions:
  - 0.5 mg/ml BD
     Gentest™ Human
     Liver Cytosol 150
     donor pool (452115)
  - Incubation Time: 2 min



### IC<sub>50</sub> - Hydralazine - HLC

IC<sub>50</sub> Determination




- Hydralazine is a probe inhibitor for AO
- Conclusion:
  - IC<sub>50</sub> for probe inhibitor Hydralazine is 2.8 µM
  - At [Hydralazine]=100 μM, 90% of AO activity was inhibited.
- Assay Conditions:
  - [Phthalazine] =  $10 \mu M$
  - O.1 mg/ml BD Gentest<sup>™</sup> Human Liver Cytosol 150 donor pool (452115)
  - Incubation Time: 2 min



### **AO Stability in hepatocytes**

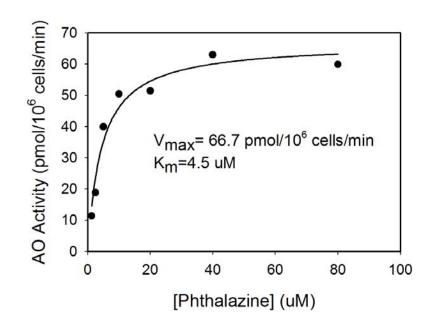
#### Aldehyde Oxidase in Human Hepatocytes



- AO Activity is linear up to 2 hours in cryopreserved hepatocytes (much more stable than HLC)
- Assay condition:
  - 250K cells per well in 48 well plate
  - [Phthalazine]=100 uM



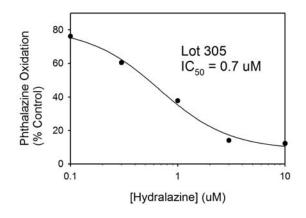
### **AO** Activity in hepatocytes

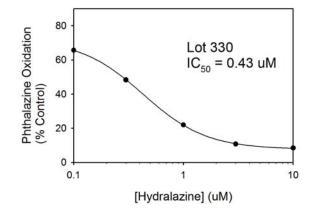

| Cryo Hepatocytes | Catalog #     | AO Activity pmol/(min* 10 <sup>6</sup> cells) |
|------------------|---------------|-----------------------------------------------|
| Lot 251          | 454504 (Susp) | 7.5                                           |
| Lot 295          | 454551 (Ind)  | 45.4                                          |
| Lot 301          | 454427 (Tra)  | 16.2                                          |
| Lot 305          | 454427 (Tra)  | 61.2                                          |
| Lot 311          | 454551 (Ind)  | 71.8                                          |
| Lot 330          | 454551 (Ind)  | 52.9                                          |

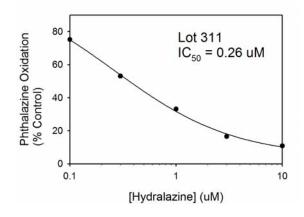
- AO activity ranges from 7.5 to 71.8 pmol/(min\*10<sup>6</sup> cells), with an average of 43 pmol/min/10<sup>6</sup> cells.
- This could be due to polymorphisms of hAO in population
  - Recent publication from Leimkuhler lab showed single NT polymorphisms changed the wild-type AO activity with Phthalazine to ~35% (R921H) or 1.4-fold (N1135S)

T. Hartmann, et al and S. Leimkuhler, "The Impact of Single Nucleotide Polymorphisms on Human Aldehyde Oxidase", 2012, *DMD*, **40**, 856-64.

### **Km** --- Phthalazine


 $K_m$  determination - Lot305





• 
$$K_m=4.5 \text{ uM}$$



### IC<sub>50</sub> in Hepatocytes







- >90% activity is inhibited by hydralazine
- IC<sub>50</sub> ranges from 0.3 to 0.7 uM



### Summary

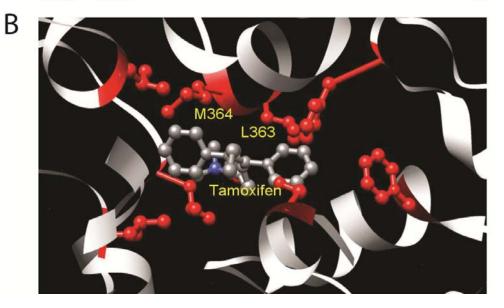
|                        | Assay<br>Linearity | Activity                                        | Km (uM) –<br>Phthalazine | IC50 (uM) -<br>Hydralazine |
|------------------------|--------------------|-------------------------------------------------|--------------------------|----------------------------|
| Human Liver<br>Cytosol | 2 min              | 5900<br>pmol/mg/min                             | 10.2 uM                  | 2.8 uM                     |
| Hepatocytes            | 120 min            | 1.4 – 71.8<br>pmol/min/10 <sup>6</sup><br>cells | 4.5 uM                   | 0.3-0.7                    |



### **CES Introduction**

- Carboxylesterases (CESs) are Phase I metabolizing enzymes.
- CESs are important for metabolism of ester containing drugs, and for rational drug design to increase bioavailability
  - Prodrug activation: CPT-11, Capecitabine (both are anti cancer drug)
  - Drug metabolism: Cocaine (Narcotics), Temocapril (Angiotensin-converting enzyme inhibitors)
- Human CESs mainly belong to the CES1 and CES2 family.
  - CES1 mainly expressed in liver, also in intestine
  - CES2 mainly expressed in intestine.



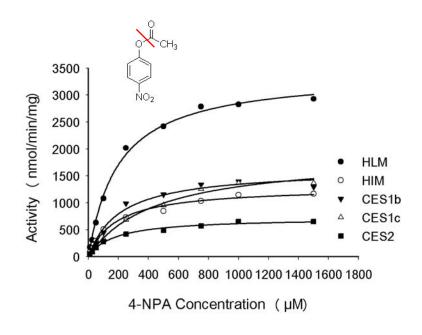

### **Substrate Specificity for CESs**

|                        |                                |             |                                        |        | Activity |       |        |
|------------------------|--------------------------------|-------------|----------------------------------------|--------|----------|-------|--------|
| Substrate              | Structure                      | Specificity | HLM                                    | CES1-b | CES1-c   | HIM   | CES2   |
|                        |                                |             | $\mu mol \cdot mg^{-1} \cdot min^{-1}$ |        |          |       |        |
| 4-Nitrophenyl acetate  | о сн₃                          | CES1≈ CES2  | 2.86                                   | 1.43   | 1.40     | 1.18  | 0.682  |
|                        | NO <sub>2</sub>                |             |                                        |        |          |       |        |
| Methyl 4-nitrobenzoate | О ОСН3                         | CES1        | 2.39                                   | 0.957  | 0.680    | 0.223 | 0.0990 |
|                        | NO <sub>2</sub>                |             |                                        |        |          |       |        |
| Fluorescein diacetate  |                                | CES2        | 16.9                                   | 0.357  | 0.281    | 37.2  | 13.8   |
|                        | H <sub>I</sub> C LO LO LO LOH, |             |                                        |        |          |       |        |

- CES1 prefers substrate with small alcohol group and large acyl group.
- CES prefers substrates with large alcohol group and small acyl group.
- BD Supersomes<sup>™</sup> CES1 and CES2 show consistent substrate specificity

### Three isoforms of CES1

| Α | CES1-a.pro<br>CES1-b.pro<br>CES1-c.pro | MWLRAFILATLSASAAW GHPSSPPVVDTVHGKVLGKFVSLEGFAQPVAIFLGIPFAKPPLGPLRFTPPQPAEPWSFVKN<br>MWLRAFILATLSASAAW GHPSSPPVVDTVHGKVLGKFVSLEGFAQPVAIFLGIPFAKPPLGPLRFTPPQPAEPWSFVKN<br>MWLBALBLATLBASAAW GHPSSPPVVDTVHGKVLGKFVSLEGFAQPVAIFLGIPFAKPPLGPLRFTPPQPAEPWSFVKN              | 79                |
|---|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|   | CES1-a.pro                             | ATSYPPMCTQDPKAGQLLSELFTNRKENI PLKLSEDCLYLNI YTPADLTKKNRLPVMVW HGGGLMVGAASTYDGLALAA                                                                                                                                                                                    | 160               |
|   | CES1-b.pro                             | ATSYPPMCTQDPKAGQLLSELFTNRKENI PLKLSEDCLYLNI YTPADLTKKNRLPVMVW HGGGLMVGAASTYDGLALAA                                                                                                                                                                                    | 159               |
|   | CES1-c.pro                             | ATSYPPMCTQDPKAGQLLSELFTNRKENI PLKLSEDCLYLNI YTPADLTKKNRLPVMVW HGGGLMVGAASTYDGLALAA                                                                                                                                                                                    | 159               |
|   | CES1-a.pro                             | HENYVVYTI QYRLGI WGFFSTGDEHSRGNWGHLDQVAALRWWQDNI ASFGGNPGSVTI FGESAGGESVSVLVLSPLAKNL                                                                                                                                                                                  | 240               |
|   | CES1-b.pro                             | HENVVVVTI QYRLGI WGFFSTGDEHSRGNWGHLDQVAALRWWQDNI ASFGGNPGSVTI FGESAGGESVSVLVLSPLAKNL                                                                                                                                                                                  | 239               |
|   | CES1-c.pro                             | HENVVVVTI QYRLGI WGFFSTGDEHSRGNWGHLDQVAALRWWQDNI ASFGGNPGSVTI FGESAGGESVSVLVLSPLAKNL                                                                                                                                                                                  | 239               |
|   | CES1-a.pro<br>CES1-b.pro<br>CES1-c.pro | FHRAI SESGVALTSVLVKKGDVKPLAEQI AI TAGCKTTTSAVMVHCLRQKTEEELLETTLKMKFLSLDLQGDPRESQPLL<br>FHRAI SESGVALTSVLVKKGDVKPLAEQI AI TAGCKTTTSAVMVHCLRQKTEEELLETTLKMKFLSLDLQGDPRESQPLL<br>FHRAI SESGVALTSVLVKKGDVKPLAEQI AI TAGCKTTTSAVMVHCLRQKTEEELLETTLKMKFLSLDLQGDPRESQPLL     |                   |
|   | CES1-a.pro<br>CES1-b.pro<br>CES1-c.pro | GTVI DGMLLLKTPEELQAERNFHTVPYMVGI NKQEFGWLI PMQLMSYPLSEGQLDQKTAMSLLWKSYPLVCI AKELI PEA GTVI DGMLLLKTPEELQAERNFHTVPYMVGI NKQEFGWLI PMQLMSYPLSEGQLDQKTAMSLLWKSYPLVCI AKELI PEA GTVI DGMLLLKTPEELQAERNFHTVPYMVGI NKQEFGWLI PMQLMSYPLSEGQLDQKTAMSLLWKSYPLVCI AKELI PEA 362 | 400<br>399<br>398 |
|   | CES1-a.pro                             | TEKYLGGTDDTVKKKDLFLDLI ADVMFGVPSVI VARNHRDAGAPTYMYEFQYRPSFSSDMKPKTVI GDHGDELFSVFGAP                                                                                                                                                                                   | 480               |
|   | CES1-b.pro                             | TEKYLGGTDDTVKKKDLFLDLI ADVMFGVPSVI VARNHRDAGAPTYMYEFQYRPSFSSDMKPKTVI GDHGDELFSVFGAP                                                                                                                                                                                   | 479               |
|   | CES1-c.pro                             | TEKYLGGTDDTVKKKDLFLDLI ADVMFGVPSVI VARNHRDAGAPTYMYEFQYRPSFSSDMKPKTVI GDHGDELFSVFGAP                                                                                                                                                                                   | 478               |
|   | CES1-a.pro                             | FLKEGASEEEI RLSKMYMKFWANFARNGNPNGEGLPHWPEYNGKEGYLGI GANTGAAGKLKDKEVAFWTNLFAKKAVEKP                                                                                                                                                                                    | 560               |
|   | CES1-b.pro                             | FLKEGASEEEI RLSKMYMKFWANFARNGNPNGEGLPHWPEYNGKEGYLGI GANTGAAGKLKDKEVAFWTNLFAKKAVEKP                                                                                                                                                                                    | 559               |
|   | CES1-c.pro                             | FLKEGASEEEI RLSKMYMKFWANFARNGNPNGEGLPHWPEYNGKEGYLGI GANTGAAGKLKDKEVAFWTNLFAKKAVEKP                                                                                                                                                                                    | 558               |
|   | CES1-a.pro<br>CES1-b.pro               | POTEHI EL POTEHI EL                                                                                                                                                                                                                                                   | 568<br>567        |

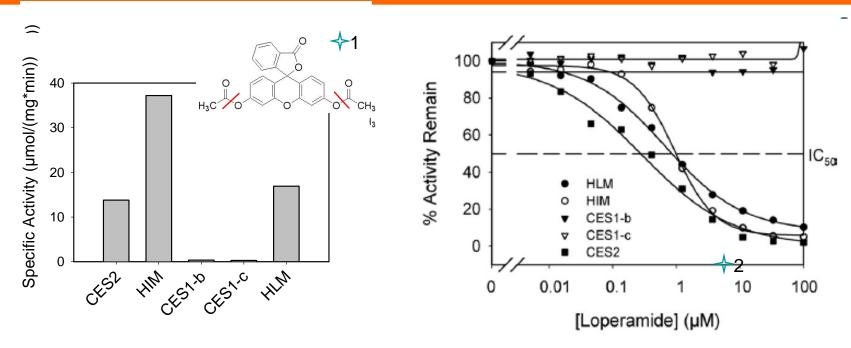



- CES1-a has an extra Ala18 near the N terminus comparing to CES1-b
- CES1-c is lacking Gln362 in the proposed active site comparing to CES1b



# Recombinant CESs show consistent characteristics as human tissues

|        | 4-NPA as substrate |                                |  |  |
|--------|--------------------|--------------------------------|--|--|
| Enzyme | $K_{m}(\mu M)$     | V <sub>max</sub> (µmol/mg/min) |  |  |
| HLM    | $198 \pm 17$       | $3.41 \pm 0.08$                |  |  |
| CES1b  | $208 \pm 41$       | $1.62 \pm 0.09$                |  |  |
| CES1c  | $441 \pm 67$       | $1.87 \pm 0.11$                |  |  |
| HIM    | $182 \pm 25$       | $1.29 \pm 0.05$                |  |  |
| CES2   | $173 \pm 22$       | $0.718 \pm 0.024$              |  |  |




#### **BD Supersomes™ CESs:**

- CES1b predominant form in liver for the hydrolysis 4-NPA (K<sub>m</sub> matches HLM)
- CES2 is the predominant form in the intestine (K<sub>m</sub> matches HIM)
- CES1c found in liver, higher K<sub>m</sub> value due to one mutation in the active site
- CES1 and CES2 activity was found to be similar to human liver microsomes and intestinal microsomes respectively



# Fluorescein Diacetate is a Probe Substrate for CES2



- Activity for BD Supersomes CES2 is about 50-fold higher vs CES1b or 1c (k<sub>cat</sub> values of CES2 is roughly 100-fold higher than CES1b or 1c based on estimated expression level)
- CES2 is present in both liver and intestine— FD hydrolysis in HLM is due to CES2
- Loperamide, a known CES2-specific inhibitor, inhibits HLM, HIM, and CES2 with similar IC<sub>50</sub>, while showing no inhibition towards CES1b/c



### **BD CESs application in Pharma**

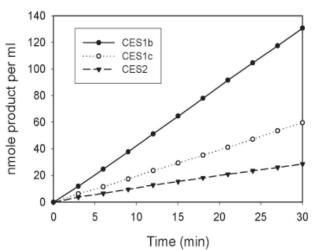
TABLE 1

Kinetics parameters of oxybutynin hydrolysis in HLMs, HLC, and recombinant human CESs

| Enzyme Source | $K_{\mathrm{m}}$ | $V_{ m max}$                                  | $CL_{int}$                                     |
|---------------|------------------|-----------------------------------------------|------------------------------------------------|
|               | $\mu M$          | $pmol \cdot min^{-1} \cdot mg \ protein^{-1}$ | $\mu l \cdot min^{-1} \cdot mg \ protein^{-1}$ |
| HLM           | 22               | 130                                           | 5.9                                            |
| HLC           | 13               | 110                                           | 8.2                                            |
| CES1          | 17               | 310                                           | 18                                             |
| CES2          | 62               | 32                                            | 0.51                                           |

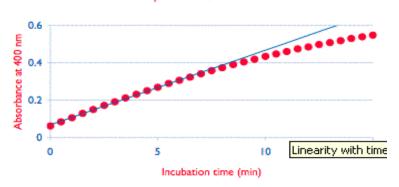
#### Application in Pharmas --- Astellas Pharma

- CES1 and CES2 from BD was tested with CES1 marker reaction (clopidogrel hydrolysis) and CES2 marker reaction (irrinotecan hydrolysis)
- CES1 and CES2 were tested with oxybutynin, K<sub>m</sub> matches human tissue.
- CES1 and CES2 were tested in inhibition studies with bis-(p-nitrophenyl)
  phosphate, clopidogrel, nordihydroguaiaretic acid, procainamide, physostigmine,
  and loperamide.




Y. Sato, et al (2012). *DMD* **40**:902-6, "Conclusive identification of the Oxybutynin-Hydrolyzing Enzyme in Human Liver"

### **Long Linearity**

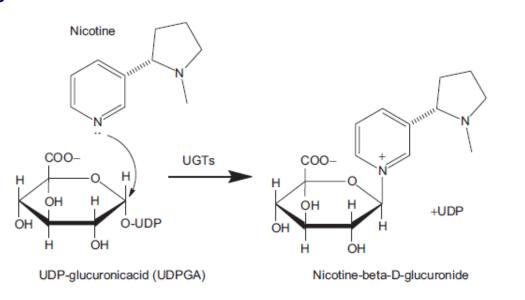

 Enzyme remains active for more than 30 minutes when incubated with the drug compound, allowing time for slowly metabolizing drug compounds to form metabolites and be identified





**BD** - Linearity up to > 30 mins for CES1 and CES2.

#### Linearity with time for human CES2




**Company X** - Linearity up to 5 mins for CES1 and CES2.



### **UDP-Glucuronosyltransferases (UGTs)**

- Most important Phase II drug metabolizing enzyme
- UGTs conjugate glucuronic acid to lipophilic substrates to more water-soluble metabolites, glucuronides, to facilitate excretion
- Two most important glucuronidation rxns are:
  - O-glucuronidation
  - N-glucuronidation





### **UGT Subfamily**

#### **UGT Subfamily:**

1A Sub-Family (9)

<u>1A1</u>, <u>1A3</u>, <u>1A4</u>, 1A5, <u>1A6</u>

1A7, 1A8, 1A9, 1A10

**2B Sub-Family (7)** 

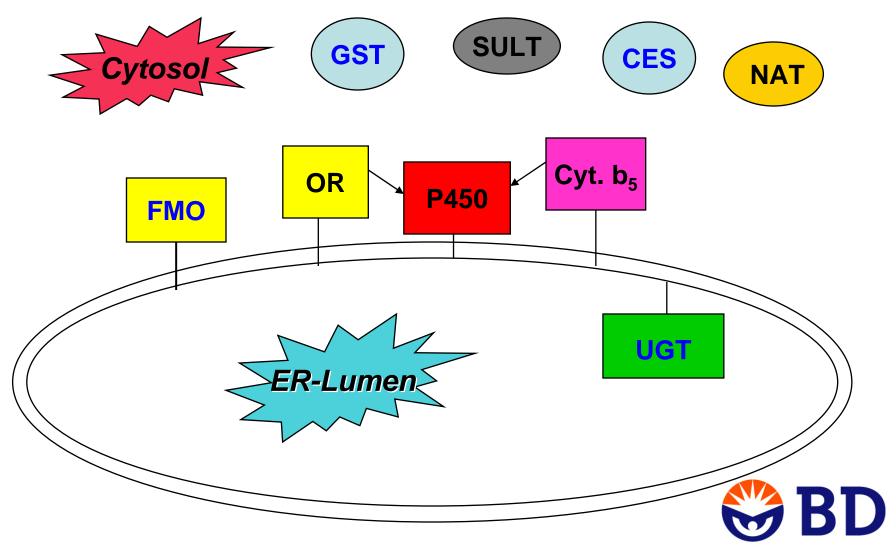
2B4, 2B7, 2B10, 2B11

**2B15**, **2B17**, **2B28** 

2A Sub-Family (3)

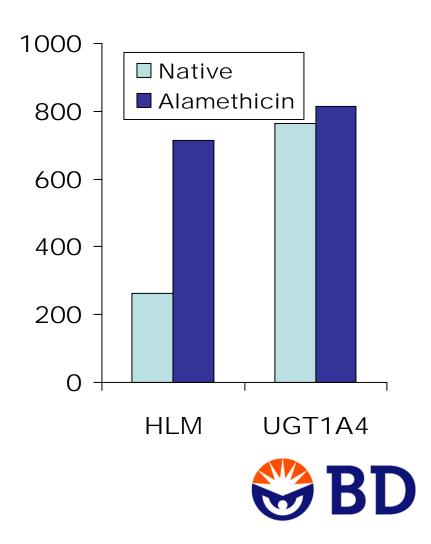
2A1, 2A2, 2A3

#### **Tissue Expression:**


11 UGTs are abundantly expressed in the liver (shown in red), UGTs 1A7 in liver, 1A8 and 1A10 are found in GI tract (shown in blue).

#### **BD UGT Supersomes:**

most extensive portfolio in the market with 13 UGTs (shown underlined)




### Phase I and Phase II Drug Metabolism Enzymes in ER and Cytosol



### **UGT Latency in HLM**

- UGTs are located on the lumenal face of the microsome.
- This limits access of substrates and UDPGA and reduces activity (latency).
- Treatment with detergents or pore forming agents reduces latency.
- Detergent treatments can be "tricky" and kill CYPs.
- Recommendation is to use pore forming agent "alamethicin"

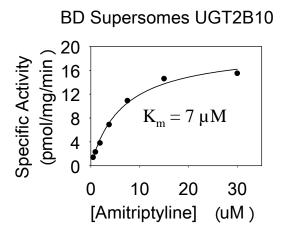


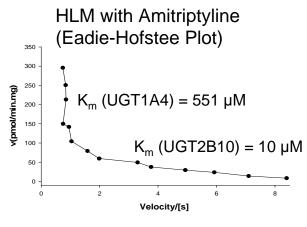
### **List of Some UGT Probe Substrates**

- UGT1A1: Estradiol (3-glucuronide), Bilirubin
- UGT1A3: 25-Trihydroxy Vitamin D3
- UGT1A4: Trifluoperazine, Amitriptyline/Imipramine (high Km, 100 uM)
- UGT1A6: Serotonin, 5-hydroxytryptophol (5HTOL)
- UGT1A9: Propofol
- UGT2B7: AZT, Morphine
- UGT2B10: Amitriptyline (low Km, 10 uM)
- UGT2B15: S-Oxazepam



### **List of Some UGT Selective Inhibitors**


- UGT1A1: Bilirubin, Atazanavir (in vivo)
- UGT1A3: 25-Trihydroxy Vitamin D3, 2-Hydroxyestradiol
- UGT1A4: Hecogenin (10uM)
- UGT1A6: Naphthol
- UGT1A9: Niflumic acid (2.5uM), Propofol
- UGT2B7: Fluconazole (2.5mM), Morphine




### **BD Supersomes™ UGT portforlio**

|         |                              | K <sub>m</sub> (μM) |     |  |
|---------|------------------------------|---------------------|-----|--|
|         | Substrate                    | Supersomes          | HLM |  |
| UGT1A1  | Bilirubin                    | 1.1                 | 0.8 |  |
| UGT1A4  | Trifluoperazine              | 61                  | 85  |  |
| UGT1A9  | Propofol                     | 10                  | 26  |  |
| UGT2B7  | Morphine (6-Glucuronidation) | 766                 | 815 |  |
| UGT2B10 | Amitriptyline                | 7                   | 10  |  |

K<sub>m</sub> of BD Supersomes<sup>™</sup>
 UGTs matches K<sub>m</sub> of HLM –
 native conformation in the
 insect cell membrane





 UGT2B10 is the high affinity enzyme for Amitriptyline Nglucuronidation



### Summary


- Non-CYP pathways are becoming more important due to reduced risk of DDI relative to CYP pathways
- Non-CYP pathways are numerous and add complexity to reaction phenotyping studies (each having a unique tissue distribution and co-factor requirement)
- In general, tools for studying non-CYP pathways are lacking compared to CYPs
- Recombinant enzymes (e.g. Supersomes) are currently available for most non-CYP drug metabolizing enzymes; most commonly used tool for studying non-CYP pathways



# BD Supersomes<sup>™</sup> - Validated for Reaction Phenotyping Studies

- Ensures activity of recombinant enzymes is functionally similar to native enzymes expressed in human tissues.
  - cDNA of human recombinant metabolizing enzymes match the published sequence from the U.S. National Library of Medicine native DNA sequence
  - K<sub>m</sub> with probe substrate matches human tissue microsomes or hepatocytes
  - IC<sub>50</sub> with probe inhibitor matches human tissue microsomes or hepatocytes
- High catalytic activity
  - Activity typically higher or comparable to human tissue microsomes or hepatocytes
  - Provides robust data suitable for high throughput reaction phenotyping and drug inhibition screening assays.
- Linearity
  - Enzymes typically remain active for more than 30 minutes when incubated with the drug compound, allowing time for slowly metabolizing drug compounds to form metabolites and be identified (for some Supersomes activity can be linear for > one hour, e.g. UGTs)
- Availability
  - Extensive portfolio of human CYP and non-CYP drug metabolizing enzymes (phase 1 and phase 2), as well as major rat P450s
  - Highly characterized and ready for use





### **Questions?**

**Contact information:** 

Jie Wang, PhD

e-mail: jie\_wang@bd.com

**Technical Support:** 

tel: 877.232.8995

e-mail: labware@bd.com

bdbiosciences.com/webinars

For research use only. Not intended for use in diagnostic or therapeutic procedures.

BD, BD Logo, and all other trademarks are property of Becton, Dickinson and Company. ©2011 BD

