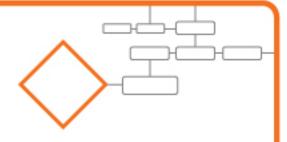


High-Throughput CYP Inhibition Screening with Drug Probe Substrates: The RapidFire® Advantage

David M. Stresser, Ph.D.


Program Manager

BD GentestSM Contract Research Services

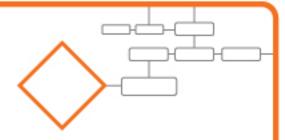
November 11, 2009


Presentation Overview

- What makes a robust CYP inhibition assay?
- What is RapidFire[®]?
- CYP inhibition assay comparison
 - LC/MS vs RapidFire-MS
- Drug Discovery ADME Services from BD GentestSM Contract Services

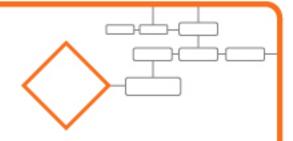
Recent Example of CYP DDI-Tamoxifen and SSRI Interaction

Retrospective analysis of 1300 breast cancer patients ca. 2003-2005


Outcome	Tamoxifen with CYP2D6 inhibitor (n=353), %	Tamoxifen w/o CYP2D6 inhibitor (n=945), %	Adjusted odds ratio
Breast cancer recurrence	13.9	7.5	1.9

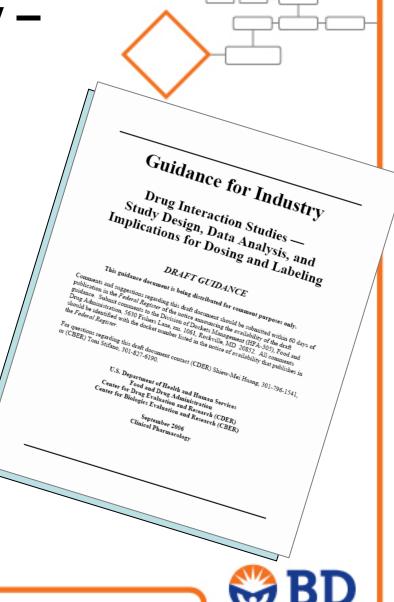
Analysis of subset of patients taking SSRI

Outcome	Tamoxifen with potent/moderate CYP2D6 inhibitors Fluoxetine, Paroxetine, Sertraline (n=213), %	Tamoxifen with weak CYP2D6 inhibitors citalopram, escitalopram, fluvoxamine (n=137), %	Adjusted odds ratio
Breast cancer recurrence	16	Not statistically different than patients not taking inhibitor	~1.9


Potential Mechanism of Tamoxifen-SSRI Interaction

- Tamoxifen itself is a prodrug, converted by CYP2D6 into 4-hydroxytamoxifen (Dehal & Kupfer, 1997)
- 4-hydroxtamoxifen has 100X more affinity for ER than parent tamoxifen.
- Fluoxetine, Paroxetine, Sertraline
 - Well established, potent inhibitors of CYP2D6
 - IC_{50} values often < 1 μ M

Characteristics of Robust P450 Inhibition Assays



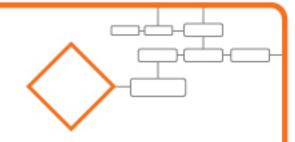
- Reaction must be single P450 isoform-specific
 - Use "probe" substrate with enzyme source (typically human liver microsomes or BD Supersomes™)
- Rapid metabolism of substrate
 - Get more metabolite, faster
- Short incubation time
 - Reduce substrate and inhibitor depletion (that can lead to artifacts)
 - Improves sensitivity in detecting time-dependent inhibitors
- Low protein concentration
 - ≤ 0.3 mg/mL
 - Reduce nonspecific binding to microsomes (that can lead to artifacts)
- Metabolite formation linear with:
 - Incubation time
 - Microsomal protein concentration
- Result is scalable across discovery and development

Guidance for Industry – Sept, 2006

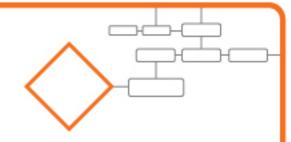

СҮР	Substrate	Substrate	l
CIP	Preferred	Acceptable	l
	phenacetin-O-deethylation	7-ethoxyresorufin-O-deethylation	l
1A2		theophylline-N-demethylation	l
1/72		caffeine-3-N-demethylation	l
		tacrine 1-hydroxylation	
2A6	coumarin-7-hydroxylation		l
2710	nicotine C-oxidation		
2B6	efavirenz hydroxylase	propofol hydroxylation	l
250	bupropion-hydroxylation	S-mephenytoin-N-demethylation	
2C8	Taxol 6α-hydroxylation	amodiaquine N-deethylation	l
		rosiglitazone para-hydroxylation	
	tolbutamide methyl-hydroxylation	flurbiprofen 4'-hydroxylation	l
2C9	S-warfarin 7-hydroxylation	phenytoin-4-hydroxylation	l
	diclofenac 4'-hydroxylation		l
2C19	S-mephenytoin 4'-hydroxylation	omeprazole 5-hydroxylation	١
2019		fluoxetine O-dealkylation	l
000	(±)-bufuralol 1'-hydroxylation	debrisoquine 4-hydroxylation	ľ
2D6	dextromethorphan O-demethylation		
	chlorzoxazone 6-hydroxylation	p-nitrophenol 3-hydroxylation	١
2E1		lauric acid 11-hydroxylation	
		aniline 4-hydroxylation	ľ
	midazolam 1-hydroxylation	erythromycin N-demethylation	١
		dextromethorphan N-demethylation	l
3A4/5*		triazolam 4-hydroxylation	
	testosterone 6ß -hydroxylation	terfenadine C-hydroxylation	
		nifedipine oxidation	

IN VITRO ADME RESEARCH SOLUTIONS

^{*} Recommend use of 2 structurally unrelated CYP3A4/5 substrates for evaluation of in vitro CYP3A inhibition. If the drug inhibits at least one CYP3A substrate in vitro, then in vivo evaluation is warranted.


Ideal High Throughput Method...

- Methodology is similar to that used in drug development
 - No need to re-validate the approach
 - Chemists are more likely to believe and use the data
 - Conforms to FDA guidance (drug probes)


Ideal High Throughput Method (cont.)

- No pooling (prior to or after incubation)
 - Avoids substrate-substrate interactions
 - No need to re-validate the approach
 - Flexibility to optimize incubation time and protein
 - Obviates need to deconvolute data
 - Maintains analytical robustness

In a CRO...

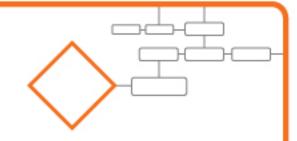
- The CRO should meet expectations for:
 - Data reliability
 - Value
 - Turnaround time

BD Biosciences – RapidFire Partnership

The in vitro ADME market leader in products and services, **BD Biosciences**, and a technology leader in high-throughput LC/MS, **BIOCIUS Life Sciences**, combine to provide a complete service package for cytochrome P450 inhibition.

BD Biosciences' validated assay methods combined with RapidFire high throughput LC-MS/MS technology.

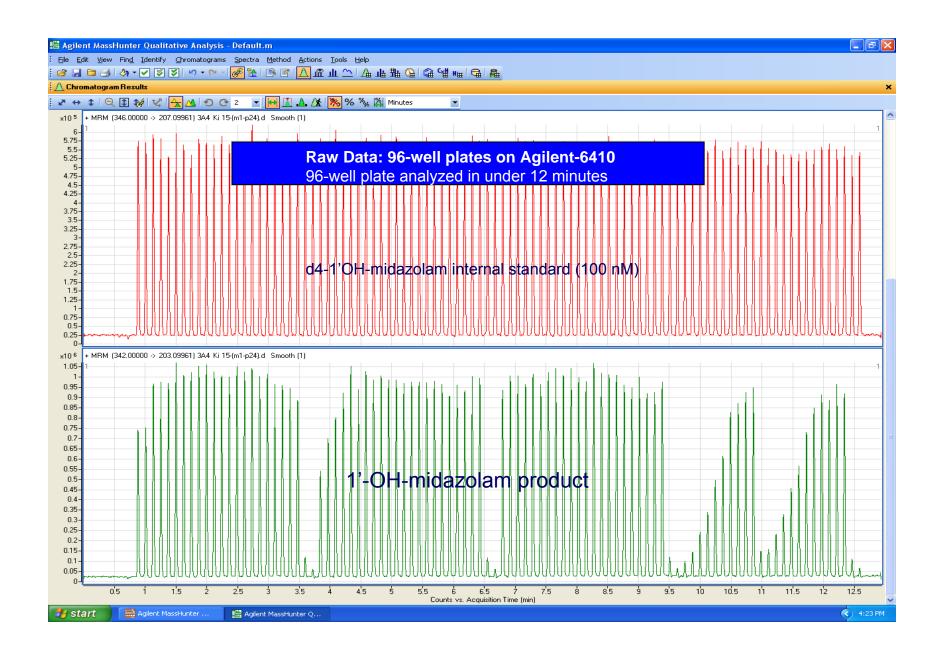
a wholly owned subsidiary of BioTrove, Inc.


RapidFire Business Unit forms BIOCIUS Life Sciences

November 10, 2009

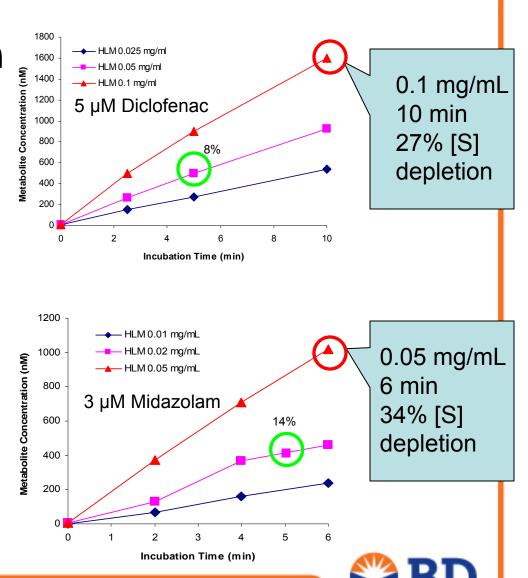
www.BIOCIUS.com.

RapidFire Mass Spectrometry

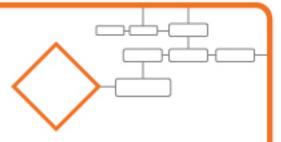


- RapidFire from BIOCIUS
- Replaces the LC of LC/MS with a rapid sample purification system
- Micro scale solid-phase extraction (μSPE)
- Isocratic run
- 5-8 sec cycle times
- No sample prep
- Permits ultra-rapid data turnaround!

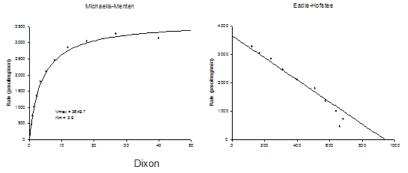
RapidFire 300 for in vitro ADME

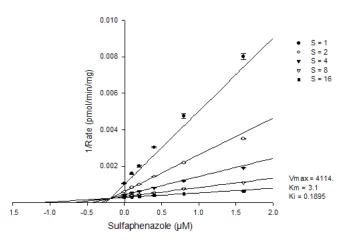


How We Validated Our Assays and How We Conduct Them for Clients - Using Conventional LC/MS

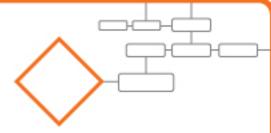


Optimization of Metabolite Formation with Time & Protein


- Linearity of metabolite formation with incubation time and HLM protein concentration
- Remember, v ~ [S]
- "Preferably no more than 10-30% substrate or inhibitor depletion should occur." – FDA guidance



Example Assay Validation Data Set: Diclofenac 4'-hydroxylase


- Resulting Data Set
 - K_M determination
 - 3.5 μM, 3.9 μM
 - IC₅₀ and K_i determination wi sulfaphenazole
 - IC₅₀: 0.41 μM, 0.63 μM
 - K_i: 0.20 μM, 0.19 μM

Cytochrome P450 Inhibition Assay Parameters

Enzyme	Substrate	K _M	Model	[S]	Inc time (min)	HLM (mg/mL)	Analytical method	Competitive inhibitor	Time Dependent inhibitor
CYP1A2	Phenacetin	37	MM	40	10	0.2	LC/MS	α-Naphthoflavone	Furafylline
CYP2A6	Coumarin	1.3	MM	1.5	5	0.05	LC/MS	Tranylcypromine	8-Methoxypsoralen
CYP2B6	Bupropion	79	MM	80	10	0.1	LC/MS	Ketoconazole	Ticlopidine
CYP2C8	Amodiaquine	1.1	MM	2	5	0.02	LC/MS	Montelukast	Gemfibrozil-gluc
CYP2C9	Diclofenac	3.7	MM	5	5	0.05	LC/MS	Sulfaphenazole	Tienilic acid
CYP2C19	S-mephenytoin	43	MM	40	10	0.3	LC/MS	S-Benzylnirvanol	S-fluoxetine
CYP2D6	Dextromethorphan	4.9	MM	5	5	0.1	LC/MS	Quinidine	Paroxetine
CYP2E1	Chlorzoxazone	60	MM	60	5	0.1	LC/MS	Chlormethiazole	Diethyldithiocarbamate
CYP3A4	Midazolam	2.2	MM	3	5	0.02	LC/MS	Ketoconazole	Azamulin
CYP3A4	Testosterone	65 ¹	Hill	50	10	0.05	LC/MS	Ketoconazole	Azamulin

 $^{^{1}}$ – K_s, Hill coefficient n = 1.3

- Parameters validated: Linearity of metabolite formation with time & protein, K_M, IC₅₀, TDI
- Aligned with FDA guidance: Drug-drug interaction studies (Sept, 2006)
- Perloff et al (2009) Validation of cytochrome P450 time-dependent inhibition assays: a two-time point IC₅₀ shift approach facilitates kinact assay design. Xenobiotica 39:99-112

Validated Analytical Methods

Enzyme	Substrate	Metabolite	Mass Transition	Internal Standard	Mass Transition	lonization	LLOQ (µM)	Std. Curve Range
CYP1A2	Phenacetin	Acetaminophen	151→111	Acetaminophen-[13C215N]	155→110	ESI+	0.0760	0.076-5.0
CYP2A6	Coumarin	7-hydroxycoumarin	161→133	7-OH-Coumarin-[D ₅]	166→138	ESI -	0.0020	0.002-1.0
CYP2B6	Bupropion	Hydroxybupropion	256→139	Hydroxybupropion-[D ₆]	262→244	ESI+	0.0005	0.0005-0.8
CYP2C8	Amodiaquine	Des-ethyl amodiaquine	328→283	Des-ethyl amodiaquine-[D ₃]	331→283	ESI+	0.0047	0.0047-1.5
CYP2C9	Diclofenac	4'-OH Diclofenac	312→268	4'-OH Diclofenac-[13C ₆]	316→272	ESI -	0.0087	0.0087-2.0
CYP2C1	9 S-mephenytoin	4'-OH S-Mephenytoin	235→150	4'-OH S-Mephenytoin-[D ₃]	238→150	ESI+	0.0040	0.004-10.0
CYP2D6	Dextromethorpha	nDextrorphan	258→157	Dextrorphan-[D ₃]	261→157	ESI+	0.0025	0.0025-1.0
CYP2E1	Chlorzoxazone	6-OH Chlorzoxazone	184→120	6-OH Chlorzoxazone-[D ₂ - ¹⁵ N]	187→67	ESI -	0.0022	0.0022-20.0
CYP3A4	Midazolam	1'-OH Midazolam	342→203	1'-OH Midazolam-[13C ₃]	347→208	ESI+	0.0025	0.0025-1.0
CYP3A4	Testosterone	6β-OH Testosterone	305→269	6β-OH Testosterone-[D ₇]	312→276	ESI+	0.0160	0.016-10.0

- Parameters validated: Selectivity, Standard curve and QC sample Accuracy and Precision, Carryover, Stability,
 Autosampler stability, LLOQ
- Full accordance with FDA guidance document for analytical method validation (2001)
- Matrix: 0.1 mg/mL HLM, NADPH regenerating system

IC₅₀ and K_i Values Obtained With Conventional LC/MS

_			mean IC ₅₀	mean K _i	Best fit	11 10 114
Enzyme	Substrate	Inhibitor	(nM)	(nM)	model	ratio IC ₅₀ /K _i
CYP1A2	Phenacetin	7,8-Benzoflavone	9	3	Mixed	2.7
CYP2B6	Bupropion	Ketoconazole	2250	1400	Competitive	1.6
CYP2C8	Amodiaquine	Montelukast	22	13	Competitive	1.7
CYP2C9	Diclofenac	Sulfaphenazole	520	195	Competitive	2.7
CYP2C19	(S)-Mephenytoin	(S)-Benzylnirvanol	410	340	Competitive	1.2
CYP2D6	Dextromethorphan	Quinidine	62	50	Competitive	1.2
CYP3A4	Midazolam	Ketoconazole	16	9	Mixed	1.8
CYP3A4	Testosterone	Ketoconazole	19	21	Competitive	0.9

Values represent means of two independent determinations; Global CV = 0.13

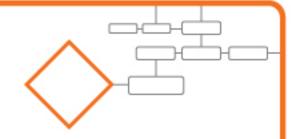
Mean = 1.7

Extensive experimental detail available in the following publication:

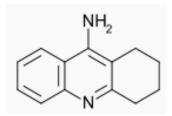

Perloff et al (2009) Validation of cytochrome P450 time-dependent inhibition assays: a two-time point IC_{50} shift approach facilitates kinact assay design. *Xenobiotica* 39:99-112

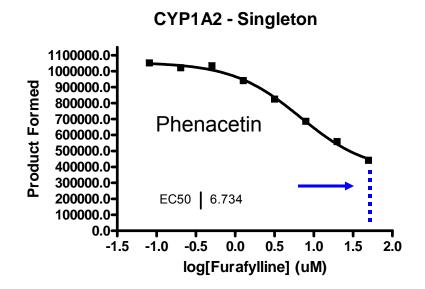
How We Validated Our Assays and How We Conduct Them for Clients – Using RapidFire MS

Assay Methods for RapidFire Analysis

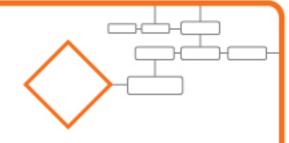


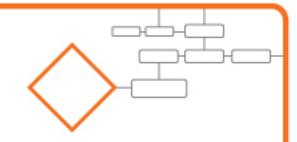
- Assay are conducted in an identical manner
- No add'l validation, except CYP1A2 and CYP2B6 (next slides)





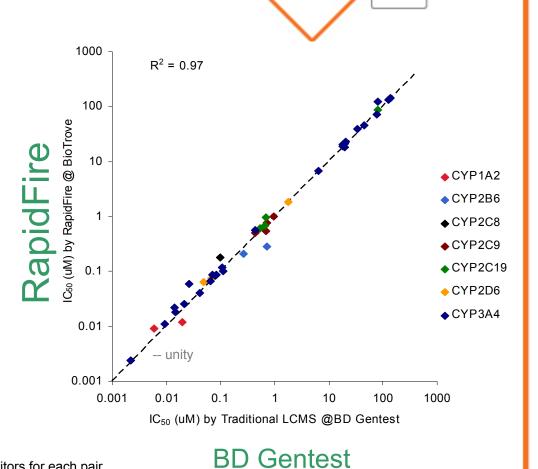
Tacrine Used as the Probe for CYP1A2


- Tacrine used as an alternate to phenacetin
- In-source fragmentation
- Tacrine is also FDArecommended


CYP2B6 - Bupropion

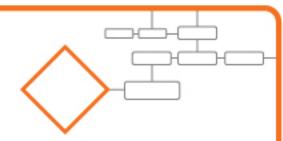
- Criteria 5 fold s/n at the IC₅₀
- Boosted the protein concentration (0.2 mg/mL)
- Extended the incubation time (20 min)

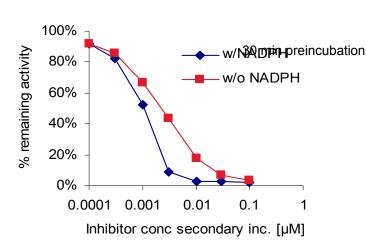
Comparison of RapidFire with Conventional

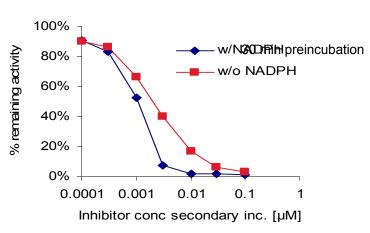


- To compare performance:
 - We generated full, 7 point IC₅₀ curves
 - Multiple compounds
 - 7 enzymes, 8 substrates
- Samples were split
- Analyzed at BD and at BIOCIUS
- Results to follow:

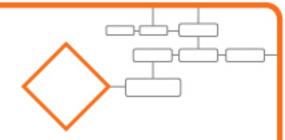
Results

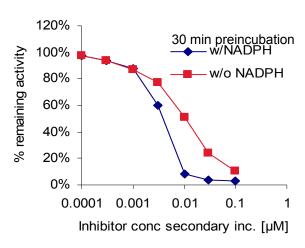

- N = 43 IC₅₀ curves
- R-squared = 0.97
- No systematic bias
 - Ratio of RapidFire to Conventional = 1.13

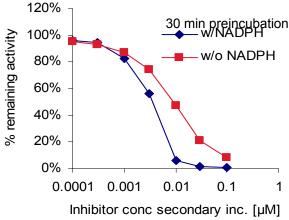



Data from 8 different enzyme/substrate pairs and 1 to 3 inhibitors for each pair. Inhibitors include ketoconazole, α -naphthoflavone, montelukast. S-benzylnirvanol, sulfaphenazole, azamulin, paroxetine, ticlopidine, S-fluoxetine, tienilic acid, verapamil and diltiazem, tamoxifen, ritonavir, erythromycin, mibefradil

Analysis of Ritonavir by IC₅₀ Shift – Midazolam as Substrate for CYP3A4




- IC₅₀ RapidFire
 - w/ NADPH = 11 nM
 - w/o NADPH = 24 nM
- Shift = 2.17
- IC₅₀ Conventional
 - w/ NADPH = 11 nM
 - w/o NADPH = 22 nM
- Shift = 2.04


 IC_{50} shift with dilution to mimic recommended K_I/k_{inact} study design (Grimm et al, 2009)

Analysis of Ritonavir by IC₅₀ Shift – Testosterone as Bubstrate for CYP3A4

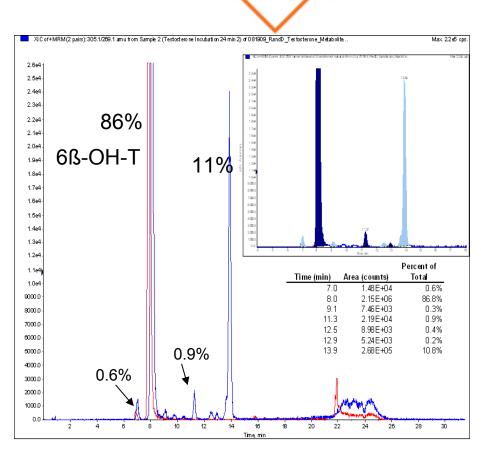
- IC₅₀ RapidFire
 - w/ NADPH = 4.4 nM
 - w/o NADPH = 11 nM
- Shift = 2.47
 - IC₅₀ Conventional
 - w/ NADPH = 3.9 nM
 - w/o NADPH = 9.4 nM
 - Shift = 2.40

 IC_{50} shift with dilution to mimic recommended K_{I}/k_{inact} study design (Grimm et al, 2009)

Inter- and Intraplate Reproducibility in IC₅₀ Values

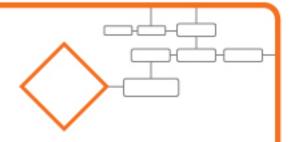
Condition	Intraplate CV	Interplate CV
CYP3A4/	0.29	0.28
Midazolam/		
Ketoconazole		

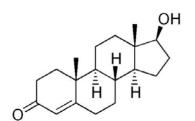
 $N = 36 IC_{50}$ values; mean = 17 nM


Examination of Analytical Selectivity in the Absence of Chromatography

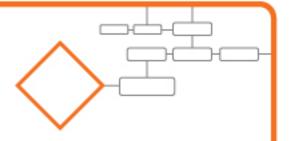
Testosterone Metabolism as a Case Study

Selectivity of Testosterone

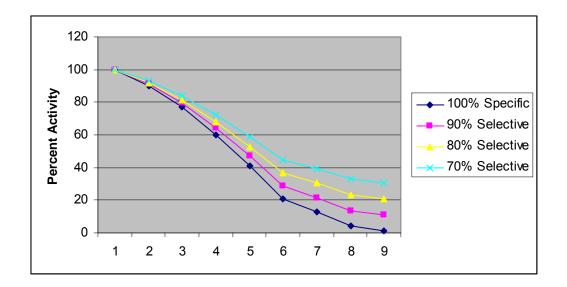

- Testosterone is a major CYP3A4 probe
 - Hydroxytestosterone metabolites yield essentially identical fragmentation by MS
 - With conventional LC/MS, chromatography solves this issue
- RapidFire-MS uses a µSPE cartridge for sample clean up.
 - There is ~ no chromatographic separation of analytes
- Does MRM alone provide adequate selectivity?
 - Non-6ß-OH metabolites may be confounders


Conditions: 250 μ M testosterone, 0.1 mg/mL 10 min. Red trace is 6 β -OH Testosterone-[D7]

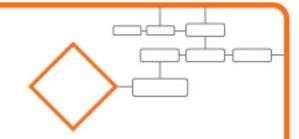
Review of Testosterone Metabolism In Vitro

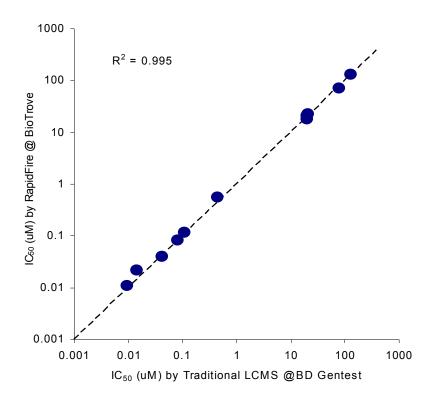


- Multiple hydroxylated metabolites in HLM
 - 6ß, 2ß, 1ß, 15ß, 16ß, 11ß, 2α(?) [(Waxman et al (1988); Krauser et al (2004); Choi et al (2005)]
- 85-90% of total is 6ß-OH
- ~10% is 2ß-OH
- CYP3A4 > to >> 2C9, 2C19 for all
- There is a very minor contribution of non-CYP3A4 to total response

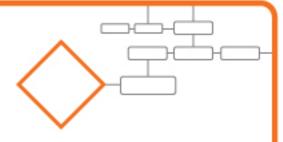


Potential Impact of Selectivity of CYP Probe Substrate


- CYP probe substrates are generally selective but not specific in HLM.
- Model decreasing selectivity
- Any decrease in selectivity tends to increase IC₅₀ values.


Substrate	Dalatina 1050
Selectivity	Relative IC50
100	1.00
90	1.28
80	2.06
70	3.58

Correlation Analysis – CYP3A4/testosterone



BD Gentest

Inhibitors tested: Ketoconazole, Fluoxetine, Ritonavir, Azamulin, Mibefradil, Verapamil, Diltiazem

The BD-BIOCIUS Advantage

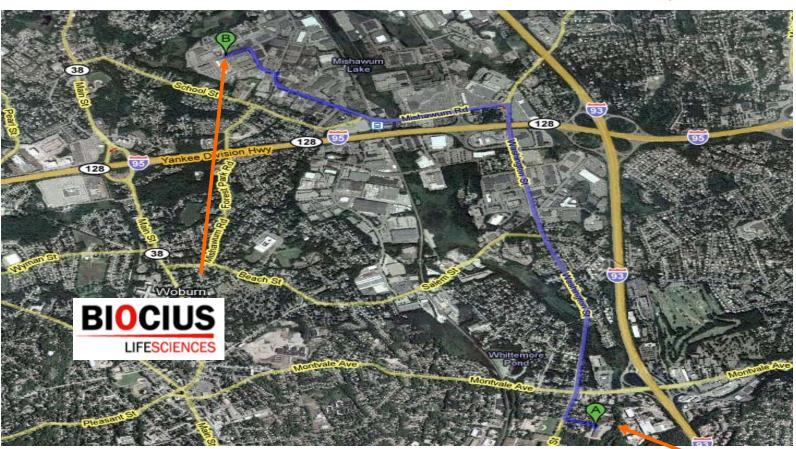
- Features
 - Full 7-point IC₅₀ curves
 - Single point, percent inhibition is risky especially for CYP3A4
 - MS with stable-labeled isotopes
 - Individually incubated and analyzed
 - Uses BD UltraPool HLM 150™ human liver microsomes or your company's pool
 - GLP- Validated Assay Methodology in Drug Discovery!
- Complete sample preparation and data analysis
 - Customers provide compounds to BD, we conduct incubations, BIOCIUS performs analysis - BD provides completed data package to customer
- Rapid Turnaround
 - Data available in 1 week
- Cost-effective
 - \$250 per 7 point curve
- Time-dependent inhibition assays available

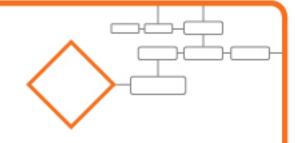
BD Gentest Contract Services

 We offer a full spectrum of affordable, high throughput ADME Drug Discovery services

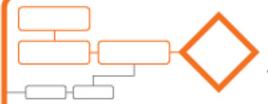
CYP inhibition by RapidFire

- Metabolic stability in microsomes
- Metabolic stability in hepatocytes
- Plasma protein binding (Rapid Equilibrium Dialysis)
- HT-reaction phenotyping with BD Supersomes™
- Caco-2 or MDR1-LLC-PK1 monolayers
- Solubility



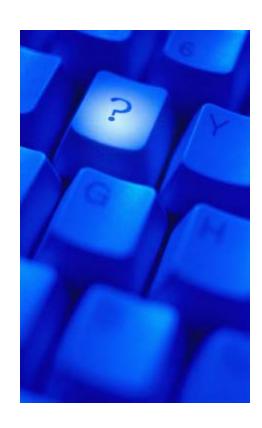

Come visit us in Woburn, MA USA

Acknowledgments



- Andrew Mason
- Andrew Blanchard
- Elke Perloff
- Eric Gangl
- Shangara Dehal
 - BD

- Vaughn Miller
- Can Ozbal
- Bill LaMarr



IN VITRO RESEARCH ADME SOLUTIONS

The most rapid path to more sound decision making

Questions?

Contact information:
David M. Stresser
David_Stresser@bd.com
781-935-5115 ext 2220

