

Life, Death, and Cell Proliferation A product guide to Apoptosis, Cell Cycle and Cytotoxicity

BD Biosciences

Clontech Discovery Labware Immunocytometry Systems Pharmingen

Table of Contents

Apoptosis
Introduction
Plasma Membrane Alterations
Annexin V Reagents and Kits
Mitochondrial Changes
Mitochondrial Membrane Potential - $\Delta \psi_m$
Activation of Caspases
Active Caspase-3 and Other Caspases
BD™ Cytometric Bead Array (CBA) Multiplexed Quantitation/Analysis of Caspase-3, PARP, Bcl-2
Active Caspase-3 ELISA
Caspase Activity Assays: Kits and Reagents
QTL Lightspeed™ Enzyme Activity Assays
Membrane Permeable Caspase Inhibitors
Analysis of Caspase Cleavage Products
DNA Fragmentation
Individual Antibodies to Proteins Involved in Apoptosis
Bcl-2 Family
Signaling Molecules
BD PowerBlot sM : Protein Array Screening Service
Summary. Application Decision Tree
Cell Cycle and Proliferation
Introduction
Analysis of Cellular DNA Content
Cell Proliferation Assays
BrdU Flow Kit
Phosphorylation of Serine 10 in Histone H3
BrdU <i>In Situ</i> Detection Kit, IHC
Analysis of Cyclins, Cyclin Dependent Kinases, and Cell Cycle Regulators
Toxicology
ADME/TOX
Genotoxicicology
DNA Damage Antibodies
40. پاندىن لارىمە Micronucleus Analysis Kits.
Immunotoxicology
Cellular Imaging
BD™ Pathway Live Cell Confocal Bioimager (New)43
BD Flow Cytometry Instrumentation
RNA. Detection
BD RiboQuant™ Multi-Probe Ribonuclease Protection Assay (RPA) System

Reactivity:

Bab:baboon; Bov:Bovine; C: Chicken; Cyno: Cynomolgus; D: Dog; Dros: Drosophila; F: Frog; GPig: Guinea Pig; Gt: Goat; Ham: Hamster; Hs: Horse; Hu: Human; Koa: Koala; Mam: Mammalian; Ms: Mouse; Pg: Pigeon; Quai, Quail; R: Rat; Rb: Rabbit; Rhe: Rhesus; Tr: Trout; Xen: Xenopus

Applications:

Biock: Blocking; FA: Functional Assay; FCM: Flow Cytometry; IC/FCM: Intracellular Flow Cytometry; IF: Immunofluorescence; IHC: Immunohistochemistry; IP: Immunoprecipitation; Neu: Neutralizing; RPA: Ribonuclease Protection Assay; WB: Western Blot

For Research Use Only. Not for use in diagnostic or therapeutic procedures.

All applications are either tested in-house or reported in the literature. See Technical Data Sheets for details.

©2005 Becton, Dickinson and Company. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in retrieval systems,

or translated into any language or computer language, in any form or by any means: electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without prior written permission from BD Biosciences.

BD flow cytometers are class I (1) laser products.

The Alexa Fluor® dye and Cascade Blue® dye antibody conjugates in this product are sold under license from Molecular Probes, Inc., for research use only or as analyte specific reagents, except for use in combination with microarrays and high content screening, and are covered by pending and issued patents. BD, BD Logo and all other trademarks are the property of Becton, Dickinson and Company. ©2005 BD

Introduction

Programmed cell death or Apoptosis is a normal physiological process that occurs during embryonic development and in the maintenance of tissue homeostasis. The term apoptosis, from the Greek word for "falling off" of leaves from a tree, is used to describe a process in which a cell actively participates in its own destructive processes. The apoptotic program is characterized by certain morphological features. These include changes in the plasma membrane such as loss of membrane symmetry and loss of membrane attachment, a condensation of the cytoplasm and nucleus, and internucleosomal cleavage of DNA. In the final stages, the dying cells become fragmented into "apoptotic bodies", which are rapidly eliminated by phagocytic cells without eliciting significant inflammatory damage to surrounding cells. Inappropriate induction of apoptosis has widespread pathological implications and has been associated with diseases such as neurodegenerative diseases, graft-versushost diseases, transplant rejection, cancer, and AIDS.

The study of apoptosis has never been more important than it is today. Along with this intensive study has come the development of a multitude of methods to detect apoptotic cells and dissect the mechanisms of apoptosis. It is important to note that not every cell type will display all the classical features of apoptosis. As such, studies designed to measure multiple aspects of apoptosis may be required to analyze and confirm the mechanism of cell death.

BD Biosciences offers a full line of apoptosis detection tools and technologies for measuring indicators of apoptosis at different stages. These reagents and technologies are based on the following distinctive features of apoptosis:

- Plasma Membrane Alterations
- Mitochondrial Changes
- Activation of Caspases
- DNA Fragmentation

Feature Measured	Assays	Key Features
Phosphatidylserine Exposure	AnnexinV binding assay • Single conjugates • AnnexinV Kits	Detects early Apoptosis markers Quick and easy Flow cytometry or Immunofluorecsence application
Mitochondrial Changes	• BD Mitoscreen Kit	• Fast, easy, single cell resolution by flow cytometry or fluorescent microscopy
Caspase Activation	Caspase Activity Assay Kits and Reagents	Quick and easy, uses spectrofluorometry
	Active Caspase -3 immunoassays (BD CBA, ELISA)	Specific, quantitative, flow cytometry and ELISA application
DNA - Fragmentation	 APO-BrdU™ TUNEL ASSAY APO-DIRECT™ TUNEL ASSAY 	Works adherent cells, single cell resolution in conjuunction with cell cycle analysis by flow cytometry

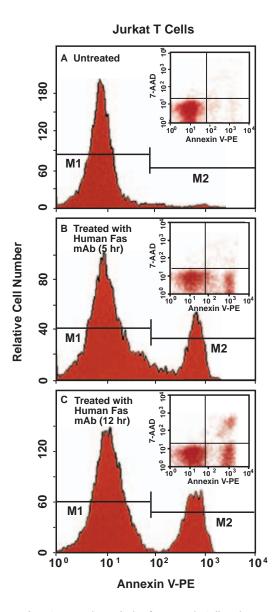
With an overwhelming number of available techniques and products, selecting the most appropriate method is often difficult. To help make this choice easier, the overview above summarizes commercially available assays from a biological perspective. More details on each assay are included in the separate product overviews. A decision tree on page 30, shows a breakdown according to sample type and the method used, and is intended to help researchers determine the most suitable method for their particular experiment.

Plasma Membrane Alterations

Annexin V Reagents and Kits

- Detect one of the earliest events of apoptosis in living cells
- Perform this simple assay in just 10 minutes
- Use flow cytometry and fluorescence microscopy

Changes in the plasma membrane are one of the earliest features of apoptosis. In apoptotic cells, the membrane phospholipid, phosphatidylserine (PS), is translocated from the inner to the outer leaflet of the plasma membrane, thereby exposing PS to the external cellular environment. Annexin V is a 35 - 36 kD Ca2+-dependent phospholipidbinding protein that has a high affinity for PS and binds to cells with exposed PS. Annexin V may be conjugated to fluorochromes such as FITC and PE, or to biotin or tagged with EGFP (enhanced green fluorescent protein). These formats retain their high affinity for PS and thus serve as sensitive probes for flow cytometric analysis of cells undergoing apoptosis.


Because externalization of PS occurs in the earlier stages of apoptosis, Annexin V staining can identify apoptosis at an earlier stage than assays based on nuclear changes such as DNA fragmentation. Annexin V staining precedes the loss of membrane integrity which accompanies the latest stages of cell death resulting from either apoptotic or necrotic processes. Therefore, staining with Annexin V in conjunction with vital dyes such as propidium iodide (PI) or 7-amino-actinomycin D (7-AAD) allows the researcher to identify early apoptotic cells (Annexin V positive, PI negative) from those that are in the later stages of apoptosis or already dead (Annexin V positive, PI positive).

The assay does not distinguish between cells that have undergone an apoptotic death from those that have died as a result of a necrotic pathway, because both dead cell types will stain positively with both Annexin V and PI. Performing a time-course of Annexin staining allows one to track cells as they undergo apoptosis. BD Biosciences offers Annexin V reagents, individually or conveniently packaged in our Annexin V Apoptosis Detection Kits:

The BD Pharmingen[™] Annexin V Detection Kits are flow cytometry based kits for quantitative analysis of apoptotic cells and contain all the critical reagents required for the staining procedure.

In addition, a wide selection of fluorochrome conjugates of Annexin V are available as individual reagents, as are the viability dyes PI and 7-AAD, thus allowing flexibility for experimental design using different a fluorescence channel for flow cytometry.

Figure 1. Flow Cytometric Analysis of Apoptotic Cells Using Annexin V–PE. Jurkat T cells were left untreated (A) or treated for 5 hr (B) or 12 hr (C) with anti-human Fas mAb (Clone DX2, Cat. No. 555670) and Protein G. Cells were incubated with Annexin V–PE in a buffer containing 7–AAD (Cat. No. 555816) and analyzed by flow cytometry. Untreated cells were primarily Annexin V–PE and 7–AAD negative, indicating that they were viable and not undergoing apoptosis. After a 5 hr treatment with DX2, there were two populations of cells: Cells undergoing apoptosis (Annexin V–PE positive, 7–AAD negative), and cells that were viable and not undergoing apoptosis of cells that were viable and not undergoing apoptosis of cells that here viable and not undergoing apoptosis (Annexin V–PE and 7–AAD negative). After a 12 hr treatment with DX2, three populations of cells were identified: Cells that had already died or were in a late stage of apoptosis (Annexin V–PE and 7–AAD negative), cells undergoing apoptosis (Annexin V–PE and 7–AAD negative), and cells that were viable and not undergoing apoptosis (Annexin V–PE and 7–AAD negative), cells undergoing apoptosis (Annexin V–PE and 7–AAD negative), cells undergoing apoptosis (Annexin V–PE and 7–AAD negative), cells undergoing apoptosis (Annexin V–PE and 7–AAD negative), and cells that were viable and not undergoing apoptosis (Annexin V–PE positive and 7–AAD negative), cells undergoing apoptosis (Annexin V–PE positive and 7–AAD negative). The Annexin V FITC Fluorescence Microscopy Kit (Cat. No. 550911) is recommended for detection of apoptosis in adherent cells. The fast and simple staining protocol provides a visual confirmation of cells in the early stages of apoptosis shortly after the induction of cell death. Detailed protocols are available in kit-and individual reagent technical data sheets. A general protocol is available online: bdbiosciences.com/pharmingen/protocols/Annexin_V_Staining.shtml

Annexin V Reagents

DESCRIPTION	FORMAT	APPS	SIZE	CAT. NO.
Annexin V	APC	FCM	100 tests	550474
			200 tests	550475
Annexin V	Biotin	FCM	100 tests	556418
			200 tests	556417
Annexin V	Cy5	FCM	100 tests	559933
			200 tests	559934
Annexin V	Cy5.5	FCM	100 tests	559935
Annexin V	FITC	FCM	100 tests	556420
			200 tests	556419
Annexin V	PE	FCM	100 tests	556422
			200 tests	556421
Annexin V	Purified	Block, FCM	100 µg	556416
Annexin V Binding Buffer, 10X Conce		FM, FCM	50 ml	556454

Annexin V Kits for Flow Cytometry

DESCRIPTION	FORMAT	APPS	SIZE	CAT. NO.
Annexin V FITC Apoptosis Detection Kit I	Kit	FCM	100 tests	556547
Annexin V FITC Apoptosis Detection Kit II	Kit	FCM	100 tests	556570
Annexin V PE Apoptosis Detection Kit I	Kit	FCM	100 tests	559763

Annexin V Kits for Fluorescence Microscopy

DESCRIPTION	FORMAT	APPS	SIZE	CAT. NO.	
Annexin V FITC Fluorescence Microscopy Kit	Kit	FM	25 Slides	550911	

Mitochondrial Changes

Mitochondrial Membrane Potential - $\Delta\psi_{m}$

- Detect changes in mitochondrial membrane potential
- Suitable for flow cytometry or fluorescence microscopy
- Easy to use and interpret

An abundance of data suggests that mitochondria play a critical role in apoptosis by releasing cytochrome c and other proteins essential for activation of pro-caspase-9 and execution of apoptosis. As such, assays designed to monitor the functional status of mitochondria are emerging as useful tools for elucidating the role of mitochondria in apoptosis, cell cycle, and other cellular processes.

One of the earliest indicators of mitochondrial mediated apoptosis is a change in the mitochondrial membrane potential.¹ This depolarization is followed by an increase in mitochondrial membrane permeability and the subsequent release of various soluble intermembrane proteins into the cytoplasm, such as cytochrome c, AIF, Smac/DIABLO, and various pro-caspases. The BD[™] MitoScreen Kit (containing JC-1) provides fluorescence-based assay to detect and measure apoptotic cells during the early stages of apoptosis.

The membrane-permeable lipophilic cationic dye, JC-1 used as a probe of $\Delta \Psi_m$.²⁴ This dye can exist in two different states: aggregates or monomers, and each state is characterized with a different emission spectra. Healthy, normal mitochondria take up dye, leading to formation of aggregates resulting in high red fluorescence measured in FL2. The formation of JC-1 aggregates are reversible. Transition of mitochondria from polarized to depolarized (due to apoptosis or other physiological events) results in leaking of dye as monomers out of the mitochondria into the cytoplasm, resulting in a decrease of red fluorescence.

JC-1 do not accumulate in mitochondria with depolarized $\Delta \psi_m$ and remain in the cytoplasm as monomers resulting in low red fluorescence.

The BD[™] Mitoscreen Kit provides a simple, quick method for obtaining quantitative data concerning mitochondrial membrane potential.

DESCRIPTION	FORMAT	APPS	SIZE	CAT. NO.	
BD MitoScreen (JC-1)	Kit	FCM	100 tests	551302	

References

- 1. Green DR, Reed JC.1998. Mitochondria and apoptosis. *Science*. 281 (5381):1309-12
- LeMasters, J.J., A.L. Nieminen, T. Qian, L.C. Trost, S.P. Elmore, Y. Nishimure, R.A. Crowe, W.E.. Cascio, D.A. Brenner, and B. Herman. 1998. The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis, and autophagy. *Biochim. Biophys. Acta*. 1366:177-196.
- Reers, M., S.T. Smiley, C. Mottola-Hartshorn, A. Chen, M. Lin, and L.B. Chen. 1995. Mitochondrial membrane potential monitored by JC-1 dye. *Methods Enzymol.* 260:406-417.
- Cossarizza, A., M. Baccarani-Contri, G. Kalashnikova, and C. Franceschi. 1993. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cationic 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem. Biophs. Res. Comm. 197:40-45.

Jurkat T Cells

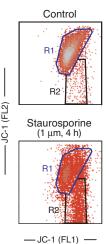
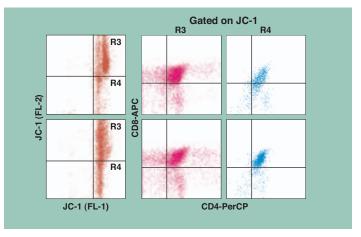



Figure 2. Jurkat T cells were either left untreated (control) or treated with staurosporine to induce apoptosis. Cells were stained with *BD™ MitoScreen (JC-1) and analyzed on a BD FACSCalibur™ (BDIS, San Jose, CA)

Depolarized $\Delta \psi_m$ Corresponds Primarily to CD4+/CD8+ Thymocytes

Figure 3. Mouse thymocytes were isolated from the thymus of a 6 week old BALB/c mouse and left untreated or treated with a mouse Fas antibody [clone Jo2, Cat. No. 554254; 2 µg/ml (1 x 10⁶ cells/ml)] + Protein G [2 µg/ml (1 x 10⁶ cells/ml)] for 3 hr to induce apoptosis. Cells were stained with JC-1 (MitoScreen, Cat. No. 551302), washed, and then stained with CD4-PerCP (Clone RM4-5, Cat. No. 553052) and CD8-APC (Clone 53-6.7, Cat. No. 553035). Cells were analyzed on a BD FACSCaliburTM flow cytometer.

Activation of Caspases

One of the earliest and most consistently observed features of apoptosis is the activation of a series of cytosolic proteases, the caspases, which cleave multiple protein substrates *en masse*, leading to the loss of cellular structure and function, and ultimately resulting in cell death.¹ In particular, caspases -3, -8 and -9 have been implicated in apoptosis: caspase-9 in the mitochondrial pathway, caspase-8 in the Fas/CD95 pathway, and caspase-3 more downstream, being activated by multiple pathways.

Active Caspase-3 and Other Caspases

- Western blot
- Immunohistochemistry
- Immunoprecipitation
- Flow cytometry

Active caspase-3 has emerged as a powerful marker of cells undergoing apoptosis, and its presence is considered to be indicative of apoptosis.^{2,3} caspase-3 is a key protease that becomes activated during the early stages of apoptosis. In its active form, it proteolytically cleaves and activates other caspases, as well as relevant targets in the cytoplasm (eg, D4-GDI) and nucleus (eg, PARP). Numerous antibodies from BD Biosciences recognize the active form of caspase-3 and are useful tools for assessing its activation status using techniques ranging from ELISA, immunohistochemistry, and immunoprecipitation to flow cytometry and BDTM CBA's (cytometric bead array). These techniques allow multiparameter analysis of the apoptotic pathway in the samples of interest.

References.

- 1. Stennicke, H.T. and G.S. Salvesen. 1997. Biochemical characteristics of Caspases-3, -6, -7, and -8. J. Biol. Chem. 272: 25719-25723.
- Nicholson, D.W., A. Ali, N.A. Thornberry, J.P. Vaillancourt, C.K. Ding, M. Gallant, Y. Gareau, P.R. Griffin, M. Labelle and M. Lazebnik. 1995. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. *Nature* 376:37-43.
- 3. Patel, T., G.J. Gores and S.H. Kaufmann. 1996. The role of proteases during apoptosis. *FASEB J.* 10:587-597.

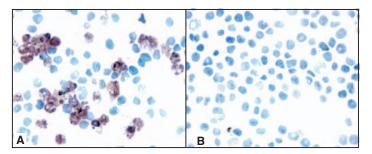
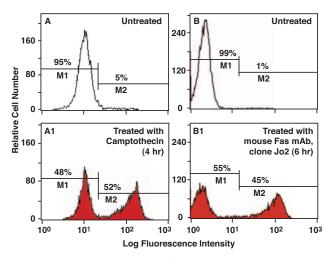
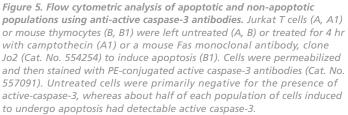
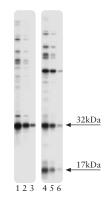





Figure 4. Staining of human Jurkat T cells using an active caspase-3 polyclonal antibody. Jurkat cells treated with 6 μ M camptothecin for 4 hr to induce apoptosis (A) or untreated (B) were cytospinned and then acetonefixed. Fixed cells were then stained with biotinylated active caspase-3 antibodies (Cat. No. 557038) and detected with a Streptavidin-Horseradish Peroxidase (HRP)-conjugated second step reagent.

Figure 6. Western blot analysis of caspase-3. Lysates from control (lanes 1 – 3) and camptothecin-treated Jurkat cells (lanes 4 – 6) were probed with anti-caspase-3 (component 51-9000064) at the following dilutions: 1:1000 (lanes 1, 4), 1:2000 (lanes 2, 5), and 1:4000 (lanes 3, 6). caspase-3 is identified as an ~32 kDa band in control and treated cells and as an ~17 kDa band in treated cells.

Caspase-3 and Other Caspases

DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
Apaf-1	Polyclonal	Serum	Rab Ig	Hu	WB	100 µl	552813
Apaf-1	24	Purified	Ms IgG ₁	Hu	WB, IF	50/150 µg	611364/65
Apaf-1	Polyclonal	Purified	Rab Ig	Hu, Ms	WB	50 µg	559683
Caspase-2 (Ich-1L)	35	Purified	Ms IgG ₁	Hu	IF, WB	50/150 µg	611022/23
Caspase-2 (Ich-1L)	G310-1248	Purified	Ms IgG ₁	Hu	WB	50/150 µg	551093/94
Caspase-2 (Ich-1L)	Polyclonal	Serum	Rab Ig	Hu, Ms, Rat	WB	100 µl	552786
Caspase-3 (CPP32)	19	Purified	Ms IgG _{2a}	Hu	IF, IP, WB	50/150 µg	610322/23
-	19	HRP	Ms IgG _{2a}	Hu	WB	50/150 µg	610324/25
Caspase-3 (CPP32)	46	Purified	Ms IgG ₁	Ms	IF, WB	50/150 µg	611048/49
Caspase-3 (CPP32)	Poly1324	Serum	Rab Ig	Chick, Hu, Monk, Rat	WB	100 µl	552037
Caspase-3 (CPP32)	Poly1325	Serum	Rab Ig	Hu	WB	100 µl	552785
Caspase-3, Active Form (CPP32)	C92-605	Purified	Rab Ig	Hu, Ms	FCM, IHC(Fr), IP	25 µg	559565
	C92-605	Biotin	Rab Ig	Hu, Ms	FCM	100 tests	550557
	C92-605	FITC	Rab Ig	Hu, Ms	FCM	100 tests	559341
	C92-605	PE	Rab Ig	Hu	FCM	100 tests	550821
Caspase-3, Active Form (CPP32)	Polyclonal	Purified	Rab Ig	Hu, Ms	FCM, IHC(Fr), IP	0.1 mg	557035
(Polyclonal	Biotin	Rab Ig	Hu, Ms	IHC(Fr)	0.1 mg	557038
	Polyclonal	PE	Rab Ig	Hu, Ms	FCM	100 tests	557091
Caspase-3, Active Form (CPP32)	Polyclonal CM1	Serum	Rab	Ms, Hu	WB	100 tests	551150
• • • • •	C92-605	Kit	Rab Ig		FCM	100 µi	550914
Caspase-3, Active Form, mAb Apoptosis Kit : PE (CPP32)			5	Hu, Ms			
Pro-Caspase-3	H15-575	Purified	Ms IgG ₁	Hu	WB	100 µg	558611
Caspase-4 (TX, Ich-2)	B25-1	Purified	Ms IgG ₁	Hu, Ms, Rat	WB	0.1 mg	556459
Caspase-6 (Mch2a)	B93-4	Purified	Ms IgG ₁	Hu	WB	0.1 mg	556581
Caspase-7 (Mch3)	10-1-62	Purified	Ms IgG ₁	Hu, Ms	IP, WB	50/150 µg	551238/39
Caspase-7 (Mch3)	11-1-56	Purified	Ms IgG ₁	Hu	IP, WB	50/150 µg	551240/41
Caspase-7 (Mch3)	51	Purified	Ms IgG _{2b}	Dog, Hu	IF, WB	50/150 µg	610812/13
Caspase-7 (Mch3)	8-1-47	Purified	Ms IgG ₁	Hu	IP, WB	50/150 µg	551236/37
Caspase-7 (Mch3)	B94-1	Purified	$Ms IgG_1$	Hu	IP, WB	0.1 mg	556541
Caspase-7 (Mch3)	Polyclonal	Serum	Rab Ig	Hu	WB	100 µl	552815
Caspase-8 (FLICE, MACH-1, Mch5)	3-1-9	Purified	Ms IgG ₁	Hu	IP, WB	50/150 µg	551242
Caspase-8 (FLICE, MACH-1, Mch5)	4-1-20	Purified	Ms IgG ₁	Hu	WB	50/150 µg	551244
Caspase-8 (FLICE, MACH-1, Mch5)	B9-2	Purified	Ms IgG _{2a}	Hu	WB	0.1 mg	556466
Caspase-8 (FLICE, MACH-1, Mch5)	Polyclonal	Serum	Rab Ig	Hu, Ms	WB	100 µl	559932
Caspase-8 (FLICE, MACH-1, Mch5)	Polyclonal	Serum	Rab Ig	Hu	WB	100 µl	551234
Caspase-8 (FLICE, MACH-1, Mch5)	Polyclonal	Serum	Rab Ig	Hu, Ms	WB	100 µl	552038
Caspase-9 (ICE-LAP-6, Mch6, Apaf-3)	2-22	Purified	Ms IgG ₁	Hu	WB	50/150 µg	551246
Caspase-9 (ICE-LAP-6, Mch6, Apaf-3)	B40	Purified	Ms IgG ₁	Hu	WB	0.1 mg	556510
Caspase-9 (ICE-LAP-6, Mch6, Apaf-3)	Polyclonal	Serum	Rab Ig	Hu, Ms	WB	100 µl	552036
Caspase-9 (ICE-LAP-6, Mch6, Apaf-3)	Polyclonal	Serum	Rab Ig	Hu	IP, WB	0.1 ml	556585
Caspase-9 (ICE-LAP-6, Mch6, Apaf-3)	Polyclonal	Purified	Rab Ig	Hu	WB	50 µg	550437
Caspase-9 (ICE-LAP-6, Mch6, Apaf-3)	Polyclonal	Purified	Rab Ig	Hu	WB	50 μg	550438
Caspase-10	Poly 1331	Serum	Rab	Ни	WB	100 µl	552810
Caspase-10 Caspase-10/b (FLICE2)	Polyclonal	Purified	Rab Ig	Hu	IP, WB	50 μg	550742
Caspase-10/b (FLICE2)	Polyclonal	Purified	Rab Ig	Hu	WB		556564
						50 µg	
Caspase-12	Polyclonal	Purified	Rab Ig	Ms, Rat, Hu	WB	100 µl	551430
Caspase-13	Polyclonal	Purified	Rab Ig	Ms, Rat, Hu	WB	100 µl	551443
Caspase-14 (mini-ICE, MICE)	32	Purified	Ms IgG ₁	Hu, Ms	IF, WB	50/150 µg	611510
Caspase-14 (mini-ICE, MICE)	70A1426	Purified	Ms IgG ₁	Hu, Ms	WB	50/150 µg	550872
c-IAP-1	B75-1	Purified	Ms IgG ₁	Hu	IP, WB	0.1 mg	556533
c-IAP-2	F30-2285	Purified	Ms IgG ₁	Hu	WB	50 µg	552782
CrmA	A71-1	Purified	Ms IgG ₁	VTC	WB	0.1 mg	556427
Cytochrome C	6H2.B4	Purified	Ms IgG ₁	Hu, Ms, Rat	IP	0.1 mg	556432
Cytochrome C	7H8.2C12	Purified	Ms IgG _{2b}	Hu, Ms, Rat, Hs, Pg	WB	0.1 mg	556433
Hsp60	24	Purified	Ms IgG ₁	Hu, Ms, Rat	IF, WB	50/150 µg	611562
	24	FITC	$Ms \ IgG_1$	Hu, Ms, Rat	IF	50/150 µg	611958
I-FLICE	Polyclonal	Purified	Rab Ig	Hu	WB	50 µg	556567
Nedd4	15	Purified	Ms IgG ₁	Ms	IF, WB	50/150 µg	611480
Nedd4	Polyclonal	Serum	Rab	Hu, Ms	WB	0.1 ml	550598

BD[™] Cytometric Bead Array (CBA) for Multiplexed Ouantitative Analysis of Caspase-3, PARP, and Bcl-2

- Convenient 96-well format for flow cytometry
- Fast, sensitive, multiplexed

BD[™] Cytometric Bead Array (CBA) human apoptosis kit (Cat. No. 557816) is a bead based assay for rapid semiquantification of active caspase-3, cleaved PARP and Bcl-2 in cell lysates by flow cytometry. The presence of active caspase-3 and cleaved PARP are indicative of apoptosis. The BD Cytometric Bead Array (CBA) human apoptosis Kit combines the principles of a sandwich ELISA with particle-based flow cytometry to analyze a cell lysate in a multiplexed assay. In this assay, cell lysates are incubated with beads. Each bead provides a capture surface for a specific protein and is analogous to an individually coated well in an ELISA plate. Fluorescently-labeled detection antibodies are added to the bead mixture with captured proteins and levels of active caspase-3, cleaved PARP, and Bcl-2 are measured by fluorescent intensity using a flow cytometer. The kit also contains lyophilized apoptotic cell lysate for generating standard curves, which enables relative quantitation of active caspase-3, cleaved PARP, and Bcl-2 in the experimental cell lysate samples. Typically, detection of active caspase-3, cleaved PARP, and Bcl-2 in cell lysates have been analyzed by classical immunoprecipitation and Western blot technologies, which provides only semi-quantitative results. The BD CBA Human Apoptosis Kit offers an alternative to both conventional immunoprecipitation and Western blot analysis. BD CBA is capable of measuring caspase-3, PARP, and Bcl-2 over a two log dynamic range using a simple 4-hour assay protocol. The BD CBA technology has comparable analytical sensitivity and a wider dynamic range than conventional ELISA. Compared to immunoprecipitation and Western blot techniques, BD CBA is more quantitative, requires less sample, takes less time, allows analysis of multiple proteins, and is more amenable to high throughput screening.

For detailed protocols, consult the manual or visit www.bdbiosciences.com/pharmingen/cba

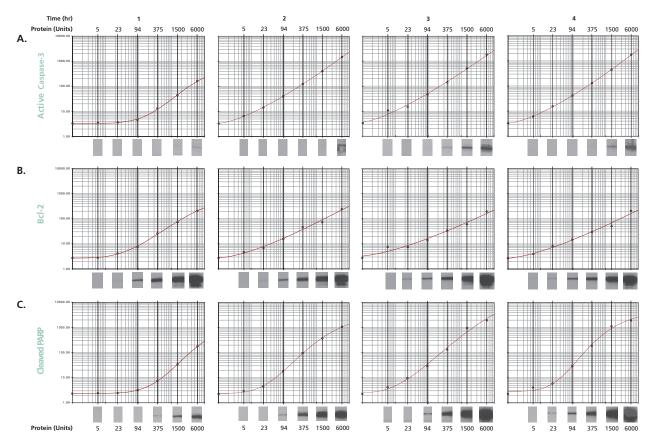


Figure 7. Time course analysis of active caspase-3, Bcl-2, and cleaved PARP protein levels in Jurkat T Cells. Cells were treated with 4μ M camptothecin for 1 hr, 2 hr, 3 hr, or 4 hr to induce apoptosis. Cells were washed twice with ice-cold PBS, lysed with lysis buffer and analyzed for levels of active caspase-3 (A), Bcl-2 (B), and cleaved PARP (C) using the BDTM CBA Human Apoptosis Kit. Protein levels are expressed in Units. A unit of active caspase-3, Bcl-2, or cleaved PARP corresponds to the amount of active caspase-3, Bcl-2, or cleaved PARP protein in 0.1µg of total protein from camptothecin-treated Jurkat cell lysate. In addition, parallel samples were tested by Western blot (A, B, C). (A): caspase-3 pAb (Cat. No. 552785), (B) Bcl-2 mAb (clone Bcl-2/100, Cat. No. 556354), and (C) cleavage-specific PARP mAb (clone F21-852, Cat. No. 552596) were used for Western blot.

DESCRIPTION	FORMAT	REACT	APPS	SIZE	CAT. NO.
BD CBA Human Apoptosis Kit	(Cleaved PARP, Bcl-2, Active Caspase-3)	Ни	FCM	50 tests	557816

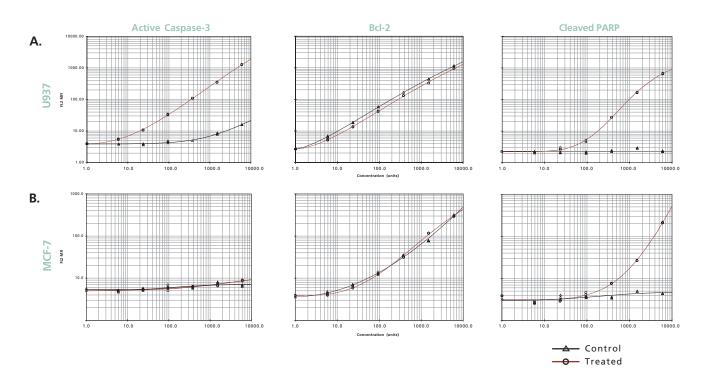


Figure 8. Active caspase-3, Bcl-2, and cleaved PARP levels in U937 and MCF-7 Cells. U937 (A) and MCF-7 (B) cells were either untreated (control) or treated with 4μ M camptothecin for 4 hr to induce apoptosis. Cells were washed twice with ice-cold PBS, lysed with lysis buffer, and analyzed for levels of active Caspase-3, Bcl-2, and cleaved PARP using a novel, sensitive, and reproducible BDTM CBA Apoptosis kit. Protein levels are expressed in units.

Active Caspase-3 ELISA

BD Biosciences – Pharmingen has developed an ELISA assay for detecting active caspase-3 which enables high-throughput screening for the detection of apoptosis. ELISA assays performed on Jurkat T cells induced to undergo apoptosis with camptothecin or staurosporine indicate that active caspase-3 was detected in lysates from treated cells but not from control (untreated) cells. More active caspase-3 was detected in lysates from staurosporinetreated cells than from camptothecin-treated cells, indicating that different treatments induce different levels of active caspase-3. Taken together, the results indicate that our new active caspase-3 ELISA assay is specific for detection of active caspase-3 in apoptotic cells. This fast and specific assay is useful for screening a large number of samples for the presence of active caspase-3, and expands our comprehensive offering of state-of-the art reagents for studying apoptosis.

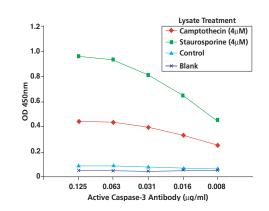
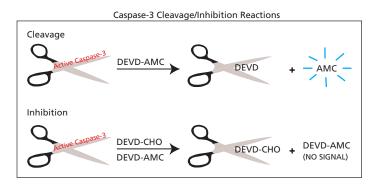


Figure 9. Active caspase-3 expression in camptothecin- and staurosporine-treated Jurkat cells. Jurkat cells were left untreated (control) or treated with 4 μ M camptothecin (4 hr) or 4 μ M staurosporine (18 hr) to induce apoptosis. Active caspase-3 was detected in apoptotic, but not in control cells. The level of active caspase-3 in staurosporinetreated Jurkat lysate was 2.5 times greater than in camptothecin- treated Jurkat lysate. The capture antibody was used at 1.0 μ g/ml and the detection antibody was serially diluted to 0.008 μ g/ml.

DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
Caspase-3, Active Form, ELISA Pair (CPP32)		Purified	Rab Ig	Hu	ELISA	Reagents for 10 Plates	550578
Apoptotic Jurkat ELISA Standard					ELISA	500 µg	550943
BD OptEIA Active Caspase-3 ELISA	Set	Set		Hu	ELISA	Reagents for 5 Plates	inquire
BD OptEIA Cleaved PARP ELISA Set		Set		Hu	ELISA	Reagents for 5 Plates	inquire

Caspase Activity Assays: Kits and Reagents

- Profile multiple caspases in vitro
- Fast, quantitative, sensitive, and easy spectrofluorometric assay
- Convenient 96-well format


Active caspase enzymes: Caspases are cysteine proteases synthesized as inactive proenzymes. Caspases, expressed in *E. coli*, spontaneously undergo autoprocessing to yield the characteristics of the active enzymes. These active, recombinant forms of human caspase-3, -6, -7, and -8 provide researchers with an additional tool for characterization of apoptotic pathways by allowing differentiation of caspases involved in selected models of apoptosis. Using different peptide substrates, the level of activity of multiple caspases can be estimated and compared. Many caspases have the ability to cleave the same substrate, at least *in vitro*, although with different efficiency. It should be noted that the synthetic substrates are the only preferred substrate motif, and cleavage is dependent on factors such as pH, concentration, reaction time, and accessibility.

Caspase inhibitors and substrates: Synthetic tetra-peptide sequences chosen for use as substrates or inhibitors mimic the cleavage site of the various caspase enzymes. These substrates are cleaved between aspartate, D, and AFC/AMC*, releasing the fluorogenic molecule AFC or AMC which may be detected by ultraviolet (UV) spectrofluorometry. The released AFC molecule can be monitored by a blue to green shift in fluorescence (excitation, 400 nm; emission, 505 nm). Likewise, the cleavage of AMC can be monitored with excitation, 360 nm and emission at 450 nm. Spectrofluorometric detection of released fluorogenic molecules can be used for high-throughput detection of apoptosis in lysed cells and tissue.

When coupled to an aldehyde group (CHO), these tetra-peptides function as potent inhibitors of caspase activity and can be used to block caspase-mediated cleavage of the corresponding fluorogenic substrates for the specific caspase involved in cell death.

BD Biosciences offers a range of tools for caspase activity assays from individual fluorogenic peptide substrates and inhibitors, to kits, to ready-to-use assay plates. All are based on the use of synthetic tetrapeptide substrates that are designed such that proteolytic cleavage by active human caspases results in release of a fluorophore or chromophore. The individual synthetic tetra-peptide substrates, together with the caspase inhibitors and active caspase enzymes, offer flexibility in the experimental design of a caspase activity assay.

For detailed information on the contents of the kits and assay protocol, please refer to Technical Data Sheet or User Manual for individual products.

Figure 10. Caspase-3 Fluorogenic Assay. Active caspase-3 binds to the fluorogenic Ac-DEVD-AMC substrate and cleaves it between asparatic acid (D) and AMC, releasing the fluorescent AMC. AMC fluorescence is quantified by UV spectrofluorometry. The Ac-DEVD-CHO aldehyde inhibitor binds strongly to the caspase-3 active site and blocks substrate binding. Hence, Ac-DEVD-AMC is not cleaved and fluorescence is not emitted.

*7-amino-4-trifluoromethyl coumarin (AFC), 7- amino-4methylcoumarin (AMC)

Peptides

DESCRIPTION	FORMAT	APPS	SIZE	CAT. NO.
Caspase-1 Fluorogenic Substrate, Ac-YVAD-AMC	Purified	SF, FA	1 mg	556451
Caspase-3 Fluorogenic Substrate, Ac-DEVD-AFC	Purified	SF, FA	1 mg	556574
Caspase-3 Fluorogenic Substrate, Ac-DEVD-AMC	Purified	SF, FA	1 mg	556449
Caspase-3 Inhibitor, Ac-DEVD-CHO	Purified	SF, FA	1 mg	556465
Caspase-3 Inhibitor, Z-DEVD-FMK	Purified	FA, SF	1 mg	550378
Caspase-6 Fluorogenic Substrate, Ac-VEID-AFC	Purified	SF, FA	1 mg	556548
Caspase-6 Inhibitor, Ac-VEID-CHO	Purified	SF, FA	1 mg	556550
Caspase-6 Inhibitor, Z-VEID-FMK	Purified	FA, SF	1 mg	550379
Caspase-8 Fluorogenic Substrate, Ac-IETD-AFC	Purified	SF, FA	1 mg	556552
Caspase-8 Inhibitor, Ac-IETD-CHO	Purified	SF, FA	1 mg	556554
Caspase-8 Inhibitor, Z-IETD-FMK	Purified	FA, SF	1 mg	550380
Caspase-8, Active Form, Recombinant Human Protein (FLICE)	Purified	FA, SF	5 µg	556481
Caspase-9 Inhibitor, Z-LEHD-FMK	Purified	FA, SF	1 mg	550381
General Caspase Inhibitor, Z-VAD-FMK	Purified	FA, SF	1.0 mg	550377
Caspase Inhibitor Negative Control, Z-FA-FMK	Purified	FA, SF	1 mg	550411

BD Pharmingen[™] Caspase Assay Sets

DESCRIPTION	FORMAT	APPS	SIZE	CAT. NO.
Caspase-3, Active Form, Recombinant Human Protein (CPP32)	Purified	FA, SF	10 µg	556471
Caspase-3, Active Form, Recombinant Human Protein (CPP32)	Purified	FA, SF	5 µg	556472
Caspase-6, Active Form, Recombinant Human Protein (Mch2)	Purified	FA, SF	5 µg	556475
Caspase-6, Active Form, Recombinant Human Protein (Mch2)	Purified	FA, SF	10 µg	556474
Caspase-7, Active Form, Recombinant Human Protein (Mch3)	Purified	FA	10 µg	556477
Caspase-7, Active Form, Recombinant Human Protein (Mch3)	Purified	FA, SF	5 µg	556478
Caspase-8, Active Form, Recombinant Human Protein (FLICE)	Purified	FA, SF	10 µg	556480

Recombinant Proteins

DESCRIPTION	FORMAT	APPS	SIZE	CAT. NO.
Caspase-3, Active Form, Enzyme Set	Set	FA, SF	20 tests	556473
Caspase-7, Active Form, Enzyme Set	Set	FA, SF	20 tests	556479
Caspase-8, Active Form, Enzyme Set	Set	FA, SF	20 tests	556482

QTL Lightspeed[™] Enzyme Activity Assays

QTL Lightspeed[™] protease activity assays are a universal mix and measure assay for protease activity that does not require antibodies or radioactive labels. The QTL Lightspeed[™] technology combines high sensitivity with high speed for highthroughput screening of kinases, based on QTL's patented fluorescence "superquenching" technology (see below).

The main features of this assay are:

- Homogeneous one-step "mix and measure" process
- No washing steps
- No radioactive compounds
- No antibodies
- No custom instrumentation
- Works with either peptide or protein substrates
- Validated for miniaturization: 96, 384, 1536, and 3456-well plate formats
- Highly robust ($Z' \ge 0.8$; Z' at 10% conversion ≥ 0.6)
- Excellent sensitivity and speed

The QTL approach to biosensing takes advantage of superquenching of fluorescent polymers by electron and energy transfer quenchers. This assay platform utilizes the light harvesting ability of conjugated polymers along with their highly delocalized excited state to provide highly amplified fluorescent signal modulation in response to the presence of very small quantities of electron and energy transfer species. This novel technology has been applied to the highly sensitive detection of proteins, small molecules, peptides, proteases, kinases, and oligonucleotides by associating the signal modulation phenomenon with antigen-receptor, substrate-enzyme, and oligo-oligo binding interactions. The assay can be run using either 96, 384, 1536, or 3456-well plates. When used with the calibrator peptide (included and specific for each protease assay) in the endpoint measurement kit, the researcher is able to generate standard curves and determine the amount of sample phosphorylation.

The QTL Lightspeed Protease Activity Assays can be used in virtually all commercially-available fluorescence spectrometers and multi-well plate readers. The excitation (blue) and detection (green) wavelengths are compatible with all common fluorimeters.

QTL Lightspeed[™] Protease assay: How it works (see figure 11)

- Detection system consists of a fluorescent polymer and quencher-tether-ligand (QTL) moieties
- The QTL moieties consist of a quencher that quenches polymer fluorescence, a ligand that is specifically cleaved by the target enzyme, and a tether that connects the quencher and ligand
- When the reactive tether is cleaved by enzyme, the quencher is released from the polymer, resulting in a quantitative signal that increases with enzyme activity or duration of the assay
- QTL Lightspeed[™] kinase and phosphatase assays

Using the same technology, QTL also offers kinase and phosphatase activity assays.

Certain assay development is available with short turnaround times.

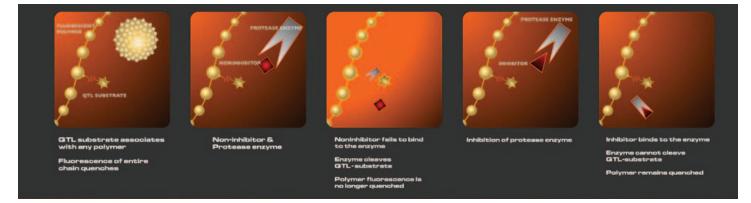


Figure 11. QTL Lightspeed[™] protease assay: How it works

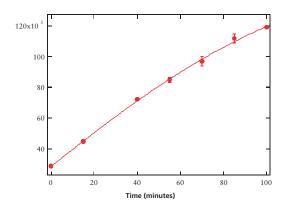


Figure 12. QTL LightspeedTM caspase-3 enzyme kinetics. The assay was carried out in a total volume of 10 µL with 1.5 µM substrate and 30 pg of caspase-3 (purchased from a commercial source). Enzyme and substrate were diluted using Assay Buffer. Reactions were carried out in a 384-well white plate at ambient temperature (~25°C) by mixing 5 µL enzyme and 5 µL substrate at various time intervals. The plate was agitated for 30 sec using the auto mix function of the microplate reader. Reactions were carried out under yellow light to minimize exposure to white light. Reactions were terminated by the addition of 40 µL of QTL Sensor to each reaction progression was monitored by measuring the emission λ_{em} at 576 nm with a λ_{co} 475 nm cut-off filter, after exciting the samples at λ_{ex} 440 n

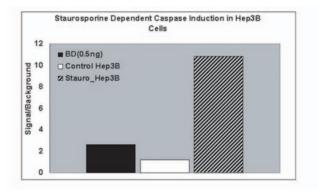


Figure 14. QTL Lightspeed[™] caspase-3/7 detection of staurosporine induced caspase-3/7 activity in Hep3B cell lysate. The QTL Lightspeed[™] caspase-3 assay was carried out on Hep3B cell lysate treated with 10 µM Staurosporine for 6 hours to induce apoptosis. The results (patterned bar) are compared to signal observed with 0.5 ng of purified caspase-3 (black solid bar) and to signal observed with Hep3B cells not treated with Staurosporine (white solid bar). The QTL Lightspeed[™] caspase-3 assay was carried out in a total volume of 10 µL containing 10 µM substrate diluted using Assay Buffer. Reactions were terminated after 60 minutes by the addition of 40 µL QTL Sensor.

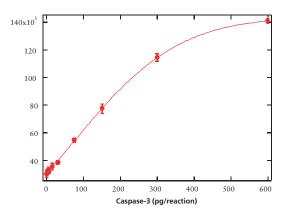


Figure 13. QTL LightspeedTM caspase-3 concentration curve – limit of detection (LOD). The QTL LightspeedTM caspase-3 assay was carried out in a total volume of 10 μ L containing 1.5 μ M QTL substrate and increasing concentrations of caspase-3, both diluted using Assay Buffer. Reactions were terminated after 60 minutes by the addition of 40 μ L QTL Sensor.

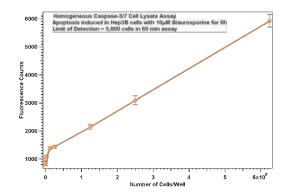


Figure 15. QTL LightspeedTM caspase-3/7 activity detection in cell lysatelimit of detection (LOD). The QTL LightspeedTM caspase-3 assay was carried out on increasing amounts of Hep3B cell lysate treated with 10 μ M Staurosporine for 6 hours to induce apoptosis. The assay was conducted in a total volume of 10 μ L containing 10 μ M diluted using Assay Buffer. Reactions were terminated after 60 minutes by the addition of 40 μ L QTL Sensor. Other reaction conditions are as listed under Figure 12.

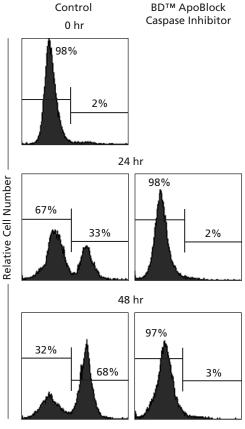
DESCRIPTION	FORMAT	APPS	SIZE	CAT. NO.
Caspase-3/7	kit	FA, HTS	100 tests	558172
	kit	FA, HTS	400 test	558173

Membrane Permeable Caspase Inhibitors

- · Cell-based assays
- Block activity of single or multiple caspases

The discovery that activation of apoptotic caspases is a cellular death sentence has led researchers to explore strategies to block caspase activation. Caspase inhibitors are emerging as a key antiapoptotic tool, and treatment with these inhibitors prior to apoptotic-inducing events has been shown to reduce cell death or enhance survival in various model systems.

The fluoromethyl ketone (FMK) inhibitors are designed to be used in both in vivo and in vitro cell-based assays to measure inhibition of apoptosis. Membrane permeable caspase inhibitors would allow researchers to determine whether apoptosis is induced through the mitochondria, through caspase activation pathways, or through the activation of cell death receptors. The FMK-based caspase inhibitors are cell-permeable due to esterification of aspartic or glutamic acid at the carboxyl group. Esterification makes inhibitors more hydrophobic. The amino end of the inhibitor is modified with N-benzyloxycarbonyl (Z) which increases hydrophobicity of the molecule and makes Z-inhibitors more cell-permeable. These inhibitors covalently modify the thiol group of the caspase enzymes making them irreversible inhibitors. Membrane permeable inhibitors can be used as general caspase inhibitor or as inhibitors of specific caspase activity to study events downstream of activation of specific caspases.


BD™ APOBlock

BDTM APOBlock is a membrane permeable cell culture-grade inhibitor that can be used to investigate the effects of irreversibly blocking caspase activity while maintaining sterility.

BD APOBlock is a proprietary peptidomimetic compound that acts as a broad-spectrum caspase inhibitor. It can be used as a sterile media supplement to inhibit apoptosis and promote cell survival, cell preservation, and recovery from cryogenic storage.

BD APOBlock may also allow users to separate caspase activity from other cell death pathways.

DESCRIPTION	APPS	SIZE	CAT. NO.
Caspase-3 Inhibitor, Z-DEVD-FMK	FA, SF	1 mg	550378
Caspase-6 Inhibitor, Z-VEID-FMK	FA, SF	1 mg	550379
Caspase-8 Inhibitor, Z-IETD-FMK	FA, SF	1 mg	550380
Caspase-9 Inhibitor, Z-LEHD-FMK	FA, SF	1 mg	550381
General Caspase Inhibitor, Z-VAD-FMK	FA, SF	1.0 mg	550377
Caspase Inhibitors Negative Control, Z-FA-FMK	FA, SF	1 mg	550411
BD ApoBlock Caspase Inhibitor	FA, SF, FCM	1.0 mg	552892

PE Active Caspase-3

Figure 16. Time course analysis of active caspase-3 expression. Freshly isolated mouse thymocytes were either left untreated or were treated with a BD™ ApoBlock caspase inhibitor (40mm final concentration) for 24 hr or 48 hr and stained with PE anti-active caspase-3 Ab (Cat. No. 550914, clone C92-605). Flow cytometry was performed on a BD FACSCalibur™ flow cytometer (BD Biosciences, San Jose, CA).

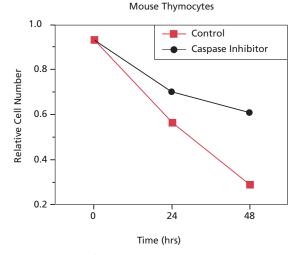
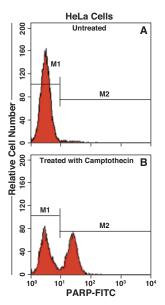
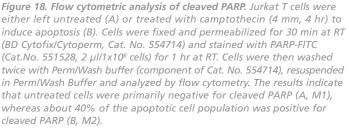


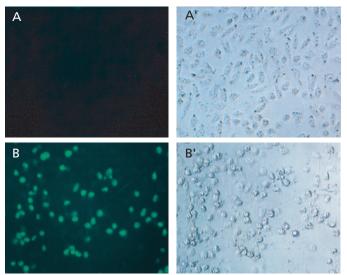
Figure 17. Inhibition of cell death using BD™ ApoBlock caspase inhibitor. Cells were treated as described in Figure 14. Cell viability was determined by Trypan blue exclusion and cells were counted using a hemacytometer. There was an overall reduction of relative cell number in both cultures over the time course. However, after 48 hours, approximately 90% of the untreated population had died, while more than 60% of the population treated with caspase inhibitor was still alive.

Analysis of Caspase Cleavage Products

- Western blot
- Immunohistochemistry
- Immunoprecipitation
- Flow cytometry


Apoptosis signaling that occurs through the cascade of caspases activation results in extensive downstream cleavage of protein substrates, leading to a loss of cellular structure and function which culminates in cell death. Patterns of protein cleavage provide insight into the mechanisms of cellular processes and cell death. For example, the ~116 kDa nuclear enzyme PARP is typically cleaved into fragments of ~85 kDa and 24 kDa by active caspase-3 during apoptosis.¹


During necrosis, a 50 kDa fragment has been observed that is caspase-3 independent and appears to result from cleavage by lysosomal proteins.² BD Biosciences – Pharmingen has antibodies which detect cleavage of PARP and are suitable for Western blot, flow cytometry and immunofluorescence applications. The increasing availability of antibodies recognizing protein cleavage fragments should help elucidate the relationships between cleavage patterns and mechanisms involved in cellular processes such as apoptosis and necrosis.


References

- Alexandre, S., C. Rast, G. Nguyen-BA, G.G. Poierier, and P. Vasseur. 2000. PARP degradation in apoptotic Syrian hamster embryo (SHE) cells compared to HL60 cell line. *Biochimie* 82:1115-1122.
- Gobeil, S., C.C. Boucher, D. Nadeau, G.G. Poierier. 2001. Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1) implication of lysosomal proteases. *Cell Death Differ*. 8:588-94.

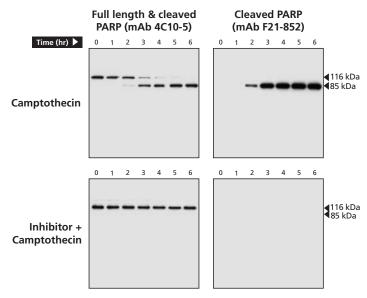


Figure 19. Immunofluorescence of cleaved PARP. Hela cells growing on Labtek II chambered slides were either left untreated (A) or treated with staurosporine (1.0 mM, 4 hr) to induce apoptosis (B). Cells were then fixed with 3.7% formaldehyde (15 min on ice), then permeabilized in 0.25% Triton X-100/3% BSA/PBS (15 min on ice). Cells were then washed twice with 3% BSA/PBS and stained with 4 µl/ml of FITC-labeled rabbit anti-PARP (Cat. No. 551528) in 3% BSA/PBS (1 hr at RT). Cells were washed twice with 3% BSA/PBS and then visualized by immunofluorescence microscopy. A' and B' represent phase correlates of A and B, respectively. The results indicate that untreated cells were primarily negative for cleaved PARP (A); whereas, a significant percentage of the staurosporinetreated population is positive for cleaved PARP.

Analysis of Caspase Cleavage Products (continued)

Antibodies to Caspase-3 Protein Substrate

Figure 20. Western blot analysis of PARP in camptothecin-treated HL-60 cells in the presence and absence of a broad spectrum caspase inhibitor (Z-VAD-FMK). HL-60 cell cultures were treated with camptothecin alone or pre-incubated with Z-VAD-FMK (Cat. No. 550377) for 30 min before adding camptothecin. Cells were lysed at various times over a 6 hr time course, and equal amounts of total cell proteins were separated by SDS-PAGE and blotted with two different PARP monoclonal antibodies. Clone 4C10-5 (Cat. No. 556494) recognizes both the 116 kDa intact form of PARP and the 85 kDa cleavage fragment. Clone F21-852 (Cat. No. 552596/97) is specific for the 85 kDa PARP cleavage fragment.*

Clone 4C10-5 identified PARP as a 116 kDa band in both the presence and absence of Z-VAD-FMK. Both antibodies identified an 85 kDa band in cultures that lacked Z-VAD-FMK. This band was observed at 2 hr and beyond, and correlated with a progressive loss of the 116 kDa form identified by clone 4C10-5. The 85 kDa form was not identified by either antibody in cultures containing Z-VAD-FMK indicating that PARP cleavage was blocked in these cultures. These results illustrate the cleavage-specific nature of clone F21-852 for the 85 kDa PARP fragment.

*Note: Camptothecin is a topoisomerase I inhibitor that is widely used to induce apoptosis. The 85 kDa fragment results from a specific pattern of PARP cleavage by active caspase-3 and is considered to be a hallmark of apoptosis. Z-VAD-FMK blocks caspase activity, and hence the formation of the 85 kDa PARP fragment.

DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
D4-GDI	Polyclonal	Serum	Rab	Hu	WB	0.1 ml	556498
D4-GDI (Cleavage-Specific)	97A1015	Purified	$Ms\;IgG_1$	Ms, Hu	WB	50 µg	550746
D4-GDI (Cleavage-Specific)	97A1015	PE	Ms IgG ₁	Ms, Hu	FCM	50 µg	551546
D4-GDI (Cleavage-Specific)	97A1015	FITC	$Ms \ IgG_1$	Ms, Hu	FCM	50 µg	551547
DFF (N-Terminal)	Polyclonal	Purified	Rab Ig	Hu	WB	50 µg	556545
DNA-PK (p350) (p350)	4F10C5	Purified	$Ms\;IgG_1$	Mam	IP, WB	0.1 mg	556456
Fractin (Cleaved Actin)	Polyclonal	Purified	Rab Ig	Hu	IHC, WB	100 µl	551527
PARP	42	Purified	Ms IgG ₁	Dog, Hu, Ms, Rat	IF, WB	50/150 µg	611038/39
PARP	C2-10	Ascites	$Ms \ IgG_1$	Hu, Ms, Ham, Bov	IF, WB	0.1 ml	556362
PARP	4C10-5	Purified	$Ms \ IgG_1$	Hu	Blot, FCM, IP, WB	0.1 mg	556494
PARP	7D3-6	Purified	$Ms \ IgG_1$	Hu	WB	50/150 µg	551024/25
PARP, Cleavage Site-Specific	Polyclonal	FITC	Rab	Hu, Bov	FCM, IF	200 µl	551528
PARP, Cleavage Site-Specific	Poly1318	Serum	Rab Ig	Bov, Hu	WB	200 µl	551923
PARP, Cleaved Form (Asp214)	F21-852	Purified	$Ms \ IgG_1$	Hu, Ms	WB	50/150 µg	552596/07
РКС	MC5	Purified	Ms IgG _{2a}	Hu, Ms, Rat, Bov, Chick, Rab	IF, IHC(Fr), IP, WB	0.1 mg	554207
PRK2 (PKN2, PAK-2)	22	Purified	$Ms\;IgG_1$	Hu	IF, WB	50/150 µg	610794/95
Rb (a.a. 332-344)	G3-245	Purified	Ms IgG1	Ms, Rat, Hu, Monk, Qua, Mink	FCM, GS, IF, IHC(F), IHC(Fr), IP, WB	0.1 mg	554136
RhoGDI/D4-GDI	Polyclonal	Serum	Rab	Hu	WB, IP	0.1 ml	556511
SREBP-1	lgG-2A4	Purified	Ms IgG ₁	Hu, Ham	IP, WB	0.1 mg	557036
SREBP-2	lgG-1C6	Purified	Ms IgG ₁	Hu	IP, WB	0.1 mg	557037

BD OptEIA Sets

DESCRIPTION	FORMAT	REACT	APPS	SIZE	CAT. NO.
BD OptEIA Cleaved PARP ELISA Set	Set	Hu	ELISA	Reagents for 5 Plates	inquire

DNA Fragmentation

- Detect nuclear DNA fragmentation in conjunction with cell cycle analyses
- Can be used with adherent cells or suspension cells
- Analyze results by flow cytometry

One of the later steps in apoptosis is DNA fragmentation, a process which results from the activation of endonucleases during the apoptotic program.^{1, 2} These nucleases degrade the higher order chromatin structure into fragments of ~300 kb and subsequently into smaller DNA pieces of about 50 bp in length.³ A method often used to detect fragmented DNA utilizes a reaction catalyzed by exogenous terminal transferase, TdT, often referred to as "end-labeling" or "TUNEL" (terminal deoxynucleotidyltransferase dUTP nick end labeling).4 APO-BrdU and Apo-Direct kits detect DNA fragmentation in adherent cells and in cells growing in suspension using flow cytometry in conjunction with cell cycle analysis.

APO-BRDU[™] Assay

In this assay, TdT catalyzes a templateindependent addition of bromolated deoxyuridine triphosphates (Br-dUTP) to the 3'-hydroxyl (OH) termini of double- and single-stranded DNA.⁵ After incorporation, these sites are identified by flow cytometry by staining cells with FITC-labeled anti-BrdU.

The APO-DIRECT[™] Assay

This assay provides a single-step method for labeling DNA breaks with FITC-dUTP, followed by flow cytometric analysis.⁶

Flow cytometry allows simultaneous analysis for several parameters, including size, granularity, and different fluorescent labeling of the same cells.

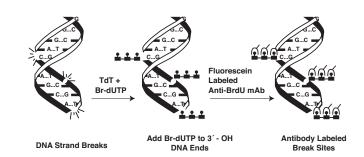
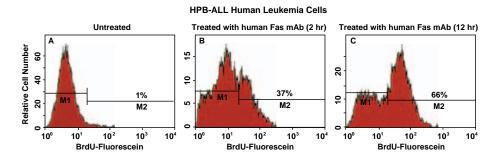
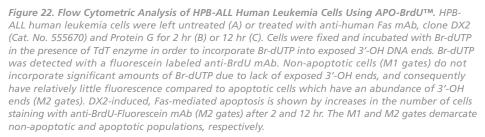




Figure 21. Schematic Representation of APO-BRDU™ Labeling. The enzyme deoxynucleotidyl transferase (TdT) catalyzes a template independent addition of bromolated deoxyuridine triphosphates (Br-dUTP) to the 3'-hydroxyl (-OH) ends of double- and single-stranded DNA. After Br-dUTP incorporation, DNA break sites are identified by a FITC-labeled anti-BrdU mAb.

DESCRIPTION	FORMAT	APPS	SIZE	CAT. NO.
APO-DIRECT Apoptosis Detection Kit	Kit	FCM	50 tests	556381
APO-BRDU Apoptosis Detection Kit	Kit	FCM	60 tests	556405

Reference

- Enari, M., H. Sakahira, H. Yokoyama, K. Okawa, A. Iwamatsu, and S. Nagata.1998. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. *Nature* 391:43-50.
- Sakahira, H., M. Enari, and S. Nagata. 1998. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. *Nature* 391:96-99.
- Walker, R.P., L. Kokileva, J. LeBlanc and M. Sikorska. 1993. Detection of the initial stages of DNA fragmentation in apoptosis. *Biotechniques* 15:1032-1036.
- Darzynkiewicz, Z., G. Juan, X. Li, W. Gorczyca, T. Murakami, and T. Traganos, T. 1997. Cytometry in cell necrobiology: Analysis of apoptosis and accidental cell death (necrosis). Cytometry 27:1-20.
- Li, X. and A. Darzynkiewicz. 1995. Labeling DNA strand breaks with Brd-UTP. Detection of apoptosis and cell proliferation. *Cell Prolif.* 28: 572-579.
- Li, X., F. Traganos, M.R. Melamed, and Z. Darzynkiewicz.1995. Single step procedure for labeling DNA strand breaks with fluorescein- or BODIPY-conjugated deoxynucleotides. Detection of apoptosis and bromodeoxyuridine incorporation. Cytometry 20:172-180.

Individual Antibodies to Proteins Involved in Apoptosis

Bcl-2 Family

Members of the Bcl-2 family play a major role in regulating the response of cells to a wide variety of apoptotic signals. Several of these proteins act as inhibitors of apoptosis, whereas others promote cell death. It is thought that protein-protein interactions between Bcl-2 family members are an important factor in their role in apoptosis.

Bcl-2 Family

DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
Bad	48	Purified	Ms IgG _{2b}	Hu, Ms, Rat	IF, IHC, WB	50/150 µg	610391/32
	48	FITC	Ms IgG _{2b}	Hu, Ms, Rat	IF	50/150 µg	610393/94
	48	TRITC	Ms IgG _{2b}	Hu, Ms, Rat	IF	50/150 µg	610395/96
BAG-1	19	Purified	Ms IgG ₁	Hu	WB	50/150 µg	611868/69
Bak	G317-2	Purified	Ms IgG ₁	Hu	WB	0.1 mg	556382
	G317-1	Purified	Ms IgM	Hu	IHC(Fr)	0.1 mg	556384
Bak	Polyclonal	Serum	Rab	Hu, Ms, Rat	IHC(P), WB	0.1 ml	556396
Bax	3	Purified	Ms IgG ₁	Dog, Hu	IF, IP, WB	50/150 µg	610982/83
Bax	6A7	Purified	Ms IgG ₁	Hu, Ms, Rat	IP, WB	0.1 mg	556467
Bax	G206-1276	Purified	Rat IgM	Hu, Ms	IHC(F), IHC(Fr), IP, WB	0.1 mg	554082
Bax	Polyclonal	Serum	Rab	Ms, Rat	IHC(F), IHC(Fr), IP, WB	0.1 ml	554106
Bax	Polyclonal	Serum	Rab	Hu	IHC(F), IHC(Fr), IP, WB	0.1 ml	554104
Bcl-10	151	Purified	Ms lgG ₁ , κ	Hu	FCM	0.1 mg	551340
Bcl-2	100	FITC	Ms IgG ₁	Hu	IC, FCM	50 tests	340575
	100	PE	Ms IgG ₁	Hu	IC, FCM	50 tests	340576
Bcl-2	3F11	Purified	Ar Ham IgG	Ms	FCM, IF, IHC(Fr), IP, WB	0.1 mg	554218
	3F11	FITC Set	Ar Ham IgG	Ms	FCM	100 tests	554221
	3F11	PE Set	Ar Ham IgG	Ms	FCM	100 tests	556537
Bcl-2	4D7	Purified	Ms IgG ₁	Hu	EM, IP, Oth, WB	50/150 µg	551097/98
Bcl-2	6C8	Purified	Ar Ham IgG	Hu	WB	50/150 µg	551051/52
	6C8	FITC Set	Ar Ham IgG	Hu	FCM	100 tests	554234
	6C8	PE Set	Ar Ham IgG	Hu	FCM	100 tests	556536
Bcl-2	7	Purified	Ms IgG ₁	Chick, Dog, Hu, Ms, Rat	IF, IHC, IP, WB	50/150 µg	610538/39
Bcl-2	Bcl-2/100	Purified	Ms IgG ₁	Hu	FCM, IHC(Fr), WB, IHC(P)	50/150 µg	551107/09
	Bcl-2/100	Purified	Ms IgG ₁	Hu	IHC(Fr), IHC(F)*	1 ml	550847
	Bcl-2/100	FITC Set	Ms IgG ₁	Hu	FCM	100 tests	556357
	Bcl-2/100	PE Set	Ms IgG ₁	Hu	FCM	100 tests	556535
Bcl-2	Polyclonal	Serum	Rab	Ms, Rat	IHC(F), IHC(Fr), IP, WB	0.1 ml	554087
Bcl-2	Polyclonal	Serum	Rab	Ms, Rat	IHC(Fr), IHC(P), IP, WB	0.1 ml	554279
Bcl-2	Polyclonal	Serum	Rab	Hu	IF, IHC(F), IHC(Fr), IP, WB	0.1 ml	554160
Bcl-w	16H12	Purified	Rat IgG _{2a}	Ms, Hu	WB	50 µg	550559
Bcl-x	2H12	Purified	Ms IgG _{2a}	Hu, Ms	WB	50/150 µg	551020/22
Bcl-x	2H12	Purified	Ms IgG _{2a}	Hu, Ms, Rat	WB	0.1 mg	556499
Bcl-x	4	Purified	Ms IgG _{2b}	Chick, Ms, Rat	IF, IHC, WB	50/150 µg	610209/10
Bcl-x	44	Purified	Ms IgG ₁	Hu, Ms, Rat	IF, IHC, WB	50/150 µg	610746/47
Bcl-x	Polyclonal	Purified	Rab Ig	Chick, Dog, Hu, Ms, Rat		50/150 µg	610211/12
Bcl-x	Polyclonal	Serum	Rab	Hu, Ms	IHC(F), IHC(Fr), WB	100 µl	551269
Bcl-xL/S	Polyclonal	Serum	Rab	Hu, Ms	IHC(F), IHC(Fr), IHC(P), WB	0.1 ml	556361
Beclin	20	Purified	Ms IgG _{2a}	Ms, Rat, Hu, Dog, Chick		50/150 µg	612112/13
Bid	40	Purified	Ms IgG ₁	Ms	WB	50/150 µg	611866/67
Bid	7	Purified	Ms IgG ₁	Hu	IF, WB	50/150 µg	611528/29
Bid	Polyclonal	Serum	Rab	Hu	IP, WB	0.1 ml	550365
Bid	Polyclonal	Serum	Rab	Hu, Ms	WB	0.1 ml	559681
Nip1	5	Purified	Ms IgG ₁	Hu, Rat	IF, WB	50 µg	611096
Bcl-2 Related Samp contains: Bad, BAG-1, Bcl-2, Bcl-x, Becin, Bio	, Bax,	Purified			WB	10 µg each	612742

Signaling Molecules

Apoptosis is one of a number of phenotypic responses mediated by signal transduction pathways occurring in the cell. Clustering of cellular receptors is a commonly observed first step in the mechanism of signal transduction pathways which results in apoptosis. Clustered receptor cytoplasmic domains trigger subsequent steps in signal transduction pathways. An important link in this system is provided by signal molecules which bind directly to the intracellular domains of receptors or within a receptor signal complex. Within the TNF receptor family (TNFR types 1 and 2, Fas, TRAIL-R1 through -R4), many proteins fall into one of two categories based on structural considerations: the so called "death domain" homologues and the TNFR associated factors (TRAFs). These proteins share sequence motifs which facilitate protein-protein interaction(s) with receptors and other signal proteins within the receptor complex. Thus, these proteins provide an important early step in the signal transduction pathways that trigger apoptosis.

Death Receptors and Ligands

DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
CD120a (TNF Receptor Type I)	MABTNFR1-A1	Purified	Ms IgG ₁	Hu	ELISA Cap.	0.5 mg	552535
	MABTNFR1-B1	Purified	Ms lgG _{2a} , κ	Hu	FCM	0.5 mg	550514
	MABTNFR1-B1	Biotin	Ms lgG _{2a} , κ	Hu	FCM	0.5 mg	550900
	MABTNFR1-B1	Biotin	Ms IgG _{2a} , κ	Hu	FCM, IF, ELISA Det.	0.5 mg	552536
CD120a (TNF Receptor, Type I/p55)	55R-286	Purified	Ar Ham IgG1, I 1	Ms	FCM	0.5 mg	559915
	55R-593	NA/LE	Ar Ham IgG1, κ	Ms	Block	0.25 mg	557536
	55R-170	NA/LE	Ar Ham IgG1, κ	Ms	Block	0.25 mg	557535
CD120b (TNF Receptor Type II)	MR2-2	Purified	Ms IgG ₁ , κ	Hu	ELISA Cap.	0.5 mg	552478
	hTNFR-M1	Purified	Rat IgG _{2b} , κ	Hu	FCM	0.5 mg	551311
	hTNFR-M1	Biotin	Rat IgG _{2b} , κ	Hu	ELISA Det., FCM	0.5 mg	552477
	hTNFR-M1	Biotin	Rat IgG _{2b} , κ	Hu	FCM	100 tests	552417
	hTNFR-M1	PE	Rat IgG_{2b} , κ	Hu	FCM	100 tests	552418
	hTNFR-M1	APC	Rat IgG _{2b} , κ	Hu	FCM	100 tests	552419
CD120b (TNF Receptor, Type II/p75)	TR75-89	Purified	Ar Ham IgG1, I3	Ms	FCM	0.5 mg	559916
	TR75-89	Biotin	Ar Ham IgG1, I3	Ms	FCM	0.5 mg	550476
	TR75-89	PE	Ar Ham IgG1, I3	Ms	FCM	0.2 mg	550086
	TR75-32	NA/LE	Ar Ham IgG1, I 1	Ms	Block	0.25 mg	557533
	TR75-54	NA/LE	Ar Ham IgG1, I3	Ms	Block	0.25 mg	557534
CD178 (Fas Ligand, CD95 Ligand)	MFL3	Purified	Ar Ham IgG1, κ	Ms	FCM	0.5 mg	555291
	MFL3	Biotin	Ar Ham IgG1, κ	Ms	FCM	0.5 mg	555292
	MFL3	PE	Ar Ham IgG1, κ	Ms	FCM	0.2 mg	555293
	MFL3	NA/LE	Ar Ham IgG1, κ	Ms	FCM	0.5 mg	555290
CD178 (Fas Ligand, CD95 Ligand)	MFL4	Purified	Ar Ham IgG3, κ	Ms, Rat	FCM	0.5 mg	555022
	MFL4	Biotin	Ar Ham IgG3, κ	Ms, Rat	FCM	0.5 mg	556998
	MFL4	NA/LE	Ar Ham IgG3, κ	Ms, Rat	FCM	0.5 mg	555021
CD178 (Fas Ligand, CD95 Ligand)	NOK-1	Purified	Ms IgG ₁	Hu	FCM	100 µg	556372
	NOK-1	Biotin	Ms IgG ₁	Hu	FCM	100 µg	556373
	NOK-1	Biotin	Ms IgG ₁	Hu	FCM	100 tests	556374
	NOK-1	NA/LE	Ms IgG ₁	Hu	FA, FCM	0.25 mg	556371
	NOK-2	Purified	Ms IgG _{2a}	Hu	ELISA, FA, IP	0.1 mg	556376
	NOK-2	NA/LE	Ms IgG _{2a}	Hu	ELISA, FA, IP	0.25 mg	556375
	G247-4	Purified	Ms IgG ₁	Hu	IHC(Fr), IP, WB	0.1 mg	556387
	G247-4	Purified	Ms IgG ₁	Hu	IHC(Fr), IHC(F)*	1 ml	550841
CD95 (Fas/APO-1)	Jo2	Purified	Ar Ham IgG2, I2	Ms	FCM, IP	500 µg	554255
	Jo2	Biotin	Ar Ham IgG2, I2	Ms	FCM	0.5 mg	554256
	Jo2	FITC	Ar Ham IgG2, I2	Ms	FCM	0.5 mg	554257
	Jo2	PE	Ar Ham IgG2, I2	Ms	FCM	0.2 mg	554258
	Jo2	Alexa Fluor® 647	Ar Ham IgG2, I2	Ms	FCM	0.1 mg	557693
	Jo2	Alexa Fluor® 488	Ar Ham IgG2, I2	Ms	FCM	0.1 mg	557679
	Jo2	PE-Cy7	Ar Ham IgG2, I2	Ms	FCM	0.1 mg	557653
	Jo2	NA/LE	Ar Ham IgG2, I2	Ms	FCM, FA, IP	0.5 mg	554254

Death Receptors and Ligands (continued)

DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
CD95 (Fas/APO-1)	DX2	Purified	Ms IgG ₁ , κ	Hu	FCM, IHC(Fr)	0.1 mg	555671
	DX2	Biotin	Ms IgG ₁ , κ	Hu	FCM	100 tests	555672
	DX2	FITC	Ms lgG ₁ , κ	Hu	FCM	100 tests	555673
	DX2	PE	Ms lgG ₁ , κ	Hu	FCM	100 tests	555674
	DX2	APC	Ms IgG ₁ , κ	Hu	FCM	100 tests	558814
	DX2	PE-Cy5	Ms lgG ₁ , κ	Hu	FCM	100 tests	559773
	DX2	NA/LE	Ms IgG1, κ	Hu	FCM, FA	0.5 mg	555670
	EOS9.1	Purified	Ms IgM, κ	Hu	FCM, FA	0.1 mg	550042
	G254-274	Purified	Ms IgG ₁	Hu	WB	0.1 mg	556370
CD95 (Fas/APO-1)	13	Purified	Ms IgG1	Chick, Dog, Hu, Ms, Rat	IF, IHC, WB	50/150 µg	610197/98
DcR1	Polyclonal	Purified	Rab Ig	Hu	WB	200 µl	550622
DR3	Polyclonal	Purified	Rab Ig	Hu	WB	50 µg	556566
DR4 (C-Terminal)	Polyclonal	Purified	Rab Ig	Hu	WB	50 µg	556544
DR4 (N-Terminal)	Polyclonal	Purified	Rab Ig	Hu	WB	50 µg	556543
DR6	Polyclonal	Purified	Rab Ig	Hu	WB	50 µg	550439
DRAK2	Polyclonal	Purified	Rab Ig	Hu	WB	200 µl	550945
FADD	1	Purified	Ms IgG1	Hu	IF, WB	50 µg	610399
FADD	1	Purified	Ms IgG ₁	Hu	IF, WB	150 µg	610400
FADD	A66-2	Purified	Ms IgG ₁	Hu	IP, WB	0.1 mg	556402
Granzyme B	2CF/F5	Purified	Ms IgG _{2a}	Hu, Rat	WB	50 µg	550558
-	GB11	FITC	Ms IgG ₁ , κ	Hu	FCM	100 tests	558132
	GB11	Alexa Fluor® 647	Ms IgG ₁ , κ	Hu	IC/FCM	0.1 mg	557867
	GB11	Alexa Fluor® 700	Ms IgG ₁ , κ	Hu	IC/FCM	0.1 mg	557971
LT -α	359-238-8	Purified	Ms IgG ₁	Hu	ELISA Cap.	1.0 mg	551222
LT-α	359-81-11	Purified	Ms IgG ₁	Hu	Block, IC/FCM	0.1 mg	554554
LT -α	359-81-11	Biotin	Ms IgG ₁	Hu	ELISA Det.	0.5 mg	554555
LT -α	359-81-11	PE	Ms IgG ₁	Hu	IC/FCM	0.1 mg	554556
μ-α	359-81-11	NA/LE	Ms IgG ₁	Hu	Neu	0.5 mg	554553
Mcl-1	22	Purified	Ms IgG ₁	Hu	IP, WB	0.1 mg	559027
	Polyclonal	Serum	Rab	Hu	IHC(F), IHC(Fr), IP, WB	0.1 ml	554103
Perforin	dG9	Purified	Ms IgG _{2b}	Hu	FCM, IHC(Fr), IP	0.1 mg	556434
	dG9	FITC Set	Ms IgG _{2b}	Hu	FCM	100 tests	556577
	dG9	PE Set	Ms IgG _{2b}	Hu	FCM	100 tests	556437
RIP	38	Purified	Ms IgG _{2a}	Chick, Dog, Hu, Ms, Rat	IF, IP, WB	50 µg	610458
	38	Purified	Ms IgG _{2a}	Chick, Dog, Hu, Ms, Rat	IF, IP, WB	150 µg	610459
	G322-2	Purified	Ms IgG ₁	Hu	WB	50 µg	551041
	G322-2	Purified	Ms IgG	Hu	WB	150 µg	551042
	Polyclonal	Serum	Rab	Hu	WB	0.1 ml	559689
SODD	Polyclonal	Serum	Rab	Hu	WB	200 µl	550857

Death Receptors and Ligands (continued)

DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
TNF	MAb1	Purified	Ms IgG ₁	Hu	ELISA Cap., WB	1.0 mg	551220
	MAb11	Purified	Ms IgG ₁	Hu	IC/FCM Block	0.1 mg	554510
	MAb11	Purified	Ms IgG ₁	Hu	ICC	0.25 mg	559071
	MAb11	Purified	Ms IgG ₁	Bab, Rhe, Cyno	IC/FCM	0.1 mg	558882
	MAb11	Biotin	Ms IgG ₁	Hu	ELISA Det.	0.5 mg	554511
	MAb11	FITC	Ms IgG₁	Hu	IC/FCM	0.1 mg	554512
	MAb11	FITC	Ms IgG ₁	Bab, Cyno, Rhe	IC/FCM	50 tests	552889
	MAb11	PE	Ms IgG ₁	Hu	IC/FCM	0.1 mg	554513
	MAb11	PE	Ms IgG ₁	Hu	IC/FCM	100 tests	559321
	MAb11	PE	Ms IgG ₁	Bab, Rhe, Cyno	IC/FCM	50 tests	557068
	MAb11	APC	Ms IgG ₁	Hu	IC/FCM	0.1 mg	554514
	MAb11	APC	Ms IgG ₁	Bab, Cyno, Rhe	IC/FCM, FCM	50 tests	551384
	MAb11	Alexa Fluor® 488	Ms IgG ₁	Hu	IC/FCM	100 tests	557722
	MAb11	Alexa Fluor® 647	Ms IgG ₁	Hu	IC/FCM	100 tests	557733
	MAD11	PE-Cy7	Ms IgG ₁	Hu	FCM	100 tests	557647
	MAD1	NA/LE	Ms IgG ₁	Hu	Neu	0.5 mg	554508
TNF	MABTNF-A5	NA/LE NA/LE	Ms IgG _{2a} , κ	Hu	Neu	0.5 mg	552467
TNF	MP6-XT22	Purified	Rat IgG ₁	Ms	WB, IC/FCM Block, ELISA Cap	0.1 mg	554416
	MP6-XT22	Purified	Rat IgG ₁	Ms	ICC	0.25 mg	559064
	MP6-XT22	FITC	Rat IgG ₁	Ms	IC/FCM	0.1 mg	554418
	MP6-XT22	PE	Rat IgG ₁	Ms	IC/FCM	0.1 mg	554419
	MP6-XT22	APC	Rat IgG ₁	Ms	IC/FCM	0.1 mg	554420
	MP6-XT22	Alexa Fluor® 488	Rat IgG ₁	Ms	IC/FCM	0.1 mg	557719
	MP6-XT22	Alexa Fluor® 647	Rat IgG ₁	Ms	IC/FCM	0.1 mg	557730
	MP6-XT22	PE-Cy7	Rat IgG ₁	Ms	IC/FCM	0.1 mg	557644
TNF	MP6-XT3	Biotin	Rat IgG ₁	Ms	ELISA Det., WB	0.5 mg	554415
	MP6-XT3	NA/LE	Rat IgG ₁	Ms	Neu	0.5 mg	554414
TNF		Purified	-	Rab			551214
INF	Polyclonal		Gt IgG		ELISA Cap.	1.0 mg	551214
	Polyclonal	Biotin	Gt IgG	Rab	ELISA Det.	1.0 mg	
TNE	Polyclonal	NA/LE	Gt IgG	Rab	FA	0.5 mg	553629
TNF	TN3-19.12 TN3-19.12	Purified Purified	Ar Ham IgG1, l 1 Ar Ham IgG1, l 1	Rat, Ms Rat, Ms	Block, IC/FCM ELISA Cap., IC/FCM Block, IP, WB	0.1 mg 0.5 mg	559500 557516
	TN3-19.12	PE	Ar Ham IgG1, I 1	Rat, Ms	IC/FCM	0.1 mg	559503
	TN3-19.12	NA/LE	Ar Ham IgG1, I 1	Ms, Rat	Neu	0.5 mg	557370
TNF	G281-2626	Purified	-	Ms	WB, ELISA Cap.	1.0 mg	551225
INF			Rat IgG₁ Rat IgG₁				554640
тыг	G281-2626	NA/LE Biotin		Ms	Neu	0.5 mg	
TNF	23H1.1	Biotin	Ms IgG ₁ , κ	Rab Rat Mc	ELISA Det	0.5 mg	552470
TNF	C1150-14	Biotin	Rab Ig	Rat, Ms	ELISA Det.	0.5 mg	557432
TRADD	37	Purified	Ms IgG ₁	Hu, Rat	IF, IHC, IP, WB	50/150 µg	610572/73
TRADD	B36-2	Purified	Ms IgG ₁	Hu	WB	0.1 mg	556496
TRAF3	B1-6	Purified	Ms IgG ₁	Hu	WB	0.1 mg	556461
TRAIL	B35-1	Purified	Ms IgG _{2b}	Hu	WB	0.1 mg	556468
	N2B2	Purified	Rat IgG _{2a} , κ	Ms	FCM	0.1 mg	550320
	RIK-1	Purified	Ms IgG ₁	Hu	FCM	0.1 mg	550517
TRAIL	RIK-2	Purified	Ms IgG ₁	Hu	FCM	0.1 mg	550515
	RIK-2	Biotin	Ms IgG ₁	Hu	FCM	200 µg	550431
	RIK-2	PE	Ms IgG ₁	Hu	FCM	0.1 mg	550516
	RIK-2	NA/LE	Ms IgG ₁	Hu	FA	250 µg	550912
TRAIL-R2 (DR5)	MD5-1	Purified	Ar Ham IgG ₂ , κ	Ms	FCM, FA	0.1 mg	557868

Death Receptors and Ligands (continued) Fast Immune and Multicolor Cocktails

DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
Intracellular TNF Detection Kit, 3-color combination		FITC, PE, PerCP-Cy5.5		Hu	FCM, IC	25 tests	340972
Anti–TNF/CD69/CD4	6401.1111, L78, SK3	FITC, PE, PerCP-Cy5.5	Ms IgG ₁	Hu	FCM, IC	50 tests	340964
TNF	6401.1111	PE	Ms IgG ₁	Hu	IC, FCM	50 tests	340512
TNF	6401.1111	FITC	Ms IgG ₁	Hu	IC, FCM	50 tests	340511
TNF	6401.1111	APC	$Ms\;IgG_1$	Hu	IC, FCM	100 tests	340534

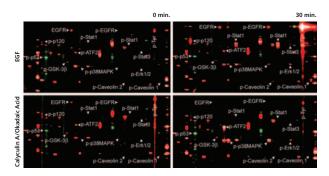
DESCRIPTION	FORMAT	REACT	APPS	SIZE	CAT. NO.
LT- α , Recombinant human		Hu	FA, ELISA Std.	10 µg	554619
TNF, Recombinant human		Hu	FA, ELISA Std.	10 µg	554618
TNF, Recombinant mouse		Ms	IC/FCM Block, FA, ELISA Std.	10 µg	554589
TNF, Recombinant rat		Rat	FA, ELISA Std.	5 µg	555109
Fas (Soluble) Recombinant Protein (FasDTM)	Purified		WB	10 µg	554336
Fas: Fc Chimeric Fusion Protein	Purified		IP	0.1 mg	556578

DESCRIPTION	APPS	SIZE	CAT. NO.
BD OptEIA Human LT- α ELISA Set	ELISA	Reagents for 20 plates	550995
BD OptEIA Human TNF ELISA Kit II	ELISA	2 plates	550610
BD OptEIA Human TNF ELISA Set	ELISA	Reagents for 20 plates	555212
BD OptEIA Human TNF Receptor I ELISA Set	ELISA	Reagents for 20 plates	550996
BD OptEIA Mouse TNF (Mono/Mono) ELISA Set	ELISA	Reagents for 20 plates	555268
BD OptEIA Mouse TNF (Mono/Poly) ELISA Kit	ELISA	2 plates	559732
BD OptEIA Mouse TNF (Mono/Poly) ELISA Set	ELISA	Reagents 20 plates	558874
BD OptEIA Mouse TNF RII ELISA Set	ELISA	Reagents for 20 plates	558857
BD OptEIA Rat TNF ELISA Kit	ELISA	2 plates	550734
BD OptEIA Rat TNF ELISA Set	ELISA	Reagents for 20 plates	558870
BD OptEIA Human TNF Receptor II ELISA Set	ELISA	Reagents for 20 plates	inquire
BD OptEIA Human sFasL ELISA Set	ELISA	Reagents for 20 plates	inquire

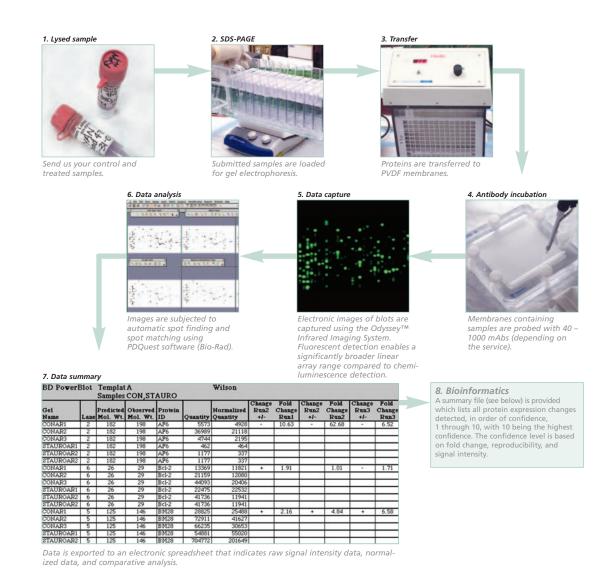
DESCRIPTION	APPS	SIZE	CAT. NO.
Human Granzyme B ELISPOT Kit	ELISPOT	2 plates	552573
Human Granzyme B ELISPOT Set	ELISPOT	10 plates	552572
Human TNF ELISPOT Pair	ELISPOT	5 plates	551882
Human TNF ELISPOT Set	ELISPOT	10 plates	551446
Mouse TNF ELISPOT Set	ELISPOT	10 plates	551491
Mouse TNF ELISPOT Pair	ELISPOT	5 plates	551875

Apoptosis Related Signal Transducers

DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
A20	E5-1619	Purified	Ms IgG ₁	Hu	WB	50 µg	550859
β-Amyloid (a.a. 1-42)	Polyclonal	Purified	Rab Ig	Hu	Blot, ELISA, IHC(Fr), RIA	25 µg	556501
β -Amyloid (a.a. 1-42) Peptide					Block, ELISA	250 µg	556504
с-Мус	9E10	Purified	Ms IgG ₁	Hu	WB	50/150 µg	551101/02
lkBa (pS32/pS36), Phospho-Specific	39A1431	Purified	Ms IgG ₁	Hu	WB	50 µg	551818
ΙΚΚα	Polyclonal	Purified	Rab Ig	Hu	WB	50 µg	550444
	B78-1	Purified	Ms IgG _{2b}	Hu	IP, WB	0.1 mg	556532
ΙΚΚβ	10A9B6	Purified	Ms IgG ₁	Hu, Ms, Rat	WB	50 µg	550621
	10AG2	Purified	Ms IgG ₁	Hu	WB	50 µg	550743
	24	Purified	Ms IgG₁	Dog, Hu	IF, WB	50/150 µg	611254/55
	F18-1875	Purified	Ms IgG ₁	Hu	WB	50/150 µg	551920
	Polyclonal	Purified	Rab Ig	Hu	WB	50 µg	550445
ΙΚΚγ (ΝΕΜΟ)	54	Purified	Ms IgG _{2b}	Dog, Hu, Rat	IF, WB	50/150 µg	611306/07
	C73-1794	Purified	Ms IgG ₁	Hu, Ms, Rat	WB	0.1 mg	557383
	C73-429	Purified	Ms IgG ₁	Hu	WB	0.1 mg	557384
	C73-764	Purified	Ms IgG ₁	Ms, Hu	IP, WB	0.1 mg	559675
JNK (pT183/pY185), Phospho-Specific	41	Purified	Ms IgG ₁	Hu	WB, FCM	50/150 µg	612540/41
pan-JNK/SAPK1 (p49 MAPK)	37	Purified	Ms IgG1	Chick, Dog, Frog, Hu, Ms, Rat	IF, IHC, WB	50/150 µg	610627/28
JNK1	G151-333	Purified	Ms IgG ₁	Hu	WB	50/150 µg	551196
JNK1/JNK2	G151-666	Purified	Ms IgG _{2a}	Hu	IP, WB	0.1 mg	554285
JNKK1 (MKK4, SEK1)	54	Purified	Ms IgG ₁	Dog, Frog, Hu, Ms, Ra	t WB	50/150 µg	610846/47
	54	Purified	Ms IgG ₁	Dros	WB	50 µg	612637
	A32-1	Purified	Ms IgG ₁	Hu	IP, WB	0.1 mg	556400
	G282-114	Purified	Ms IgG ₁	Hu	IP, WB	0.1 mg	554105
JNKK2	C87-565	Purified	Ms IgG _{2b}	Hu	IP	0.1 mg	559676
LITAF	30	Purified	Ms IgG ₁	Hu	IF, WB	50/150 µg	611614/15
MEK1	25	Purified	Ms IgG _{2a}	Chick, Dog, Frog, Hu, Ms, Rat	IF, IHC, IP, WB	50/150 µg	610121/22
MEK2	96	Purified	$Ms\;IgG_{2a}$	Chick, Dog, Frog, Hu, Ms, Rat	IF, IP, WB	50/150 µg	610235/36
	A7-1	Purified	Ms IgM	Hu, Ms	WB	0.1 mg	556386
	Polyclonal	Serum	Rab	Hu, Ms	WB	0.1 ml	554098
NIK	Polyclonal	Purified	Rab Ig	Hu	WB	50 ug	556569
PKR	23	Purified	Ms IgG _{2a}	Rat	IF, WB	50/150 µg	611514
PKR (p68 Kinase)	13	Purified	Ms IgG ₁	Hu	IF, WB	50/150 µg	610764/65
PTEN (MMAC1, TEP-1)	2	Purified	Ms IgG ₁	Hu, Ms, Rat	IF, WB	50/150 µg	611500/01
······································	2	Purified	Ms IgG ₁	Dros	IF, WB	50,150 µg	612649



BD PowerBlot[™] Protein Array Screening Service


BD PowerBlotSM Protein Array Screening Service is a patented, rapid screening service that simultaneously measures changes of expression and phosphorylation levels of 40 to 1000 of proteins. Small-scale screening service is available for 40 antibodies or 150 antibodies of your choice. Alternatively, select functional screens, each involving 80 – 300 antibodies, such as the Apoptosis Array, Cell Cycle Array, or the Phospho-Specific Array.

This assay uses an extensive library of quality antibodies. Levels of protein expression of fully characterized proteins are measured and stored for analysis. The multiple antibody approach will generate systematic data regarding the levels, dynamics, and distribution of signal transduction proteins under both normal and disease conditions.

With each service performed, we provide you with raw data, comparative analyses, and a summary of your results. For more information please visit **www.powerblot.com**.

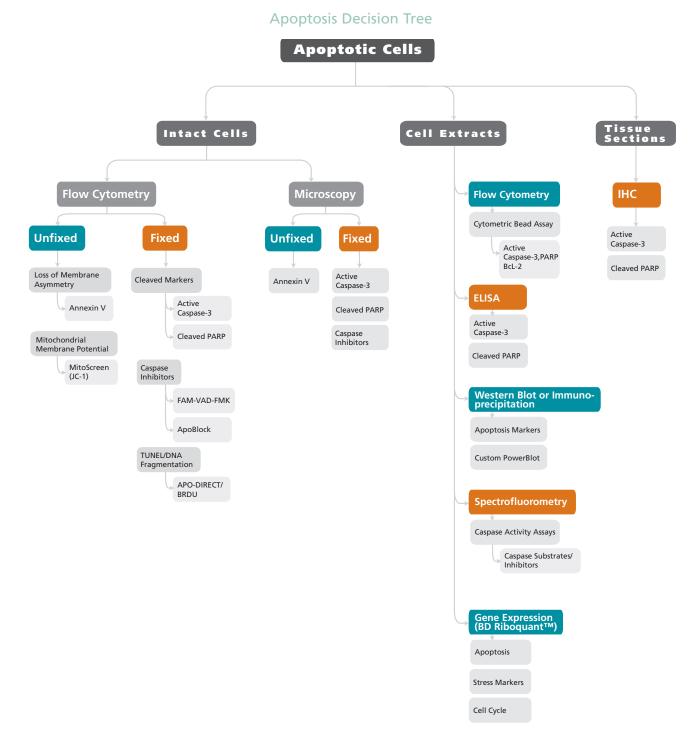


Figure 23. The BD PowerBlot^{5M} Phospho Specific Array measures the phosphorylation states of more than 30 signaling proteins, plus total protein expression for each of the phospho-specificities. This screen targets several signaling pathways and can be used to examine intracellular perturbations more subtle than the up- or down-regulation of protein expression. Shown below are data from our Phospho-Specific Array, using A431 cells stimulated with EGF or with calyculin A and okadaic acid. With each service performed, we provide you with the raw data, comparative analyses, and a summary of your results

Summary. Application Decision Tree

In summary, although the underlying cellular mechanisms of the assays discussed here may vary, each assay is uniquely valuable for identifying cells undergoing apoptosis. Apoptosis is a highly conserved process; therefore, the majority of apoptosis assays can be used for a wide variety of model systems. It is nevertheless important to note that the optimal method for identification of apoptotic events will depend on the model system used, on the cell or tissue type, as well as on the mode of induction of apoptosis. The decision to select a particular assay(s) often relies on a combination of the sample material available, the technique desired, and the cellular phenomena under examination. The decision tree below shows a breakdown according to the type of sample and the method used, and is intended to help researchers choose the most suitable methods for their particular experiment.

Cell Cycle and Proliferation

Introduction

Somatic cells proliferate to support tissue and organismal growth and to replace damaged cells. Proliferation is also a fundamental response that underlies cellular mechanisms involved in immunity, inflammation, hematopoiesis, neoplasia, and other biological responses. (For example, in adaptive immunity, specific T and B lymphocytes undergo clonal expansion (division and differentiation) in response to foreign antigenic stimulation. Cell growth, replication, and division in eukaryotic cells occur according to a highly controlled series of events called the cell cycle.¹

The Cell Cycle

The cell cycle can be subdivided into two major stages: interphase (a phase between mitotic events) and mitosis (*Figure 25*). There are three distinct, successive stages within interphase, called G1, S, and G2 phases. During G1, cells "monitor" their environment and upon receipt of requisite signals, induce growth (synthesize RNA and proteins). If conditions are right, cells "commit" to DNA synthesis (S phase) and replicate their chromosomal DNA. A G2 phase follows in which cells continue to grow and prepare for mitosis. G2 allows time for the cell to ensure DNA replication is complete before initiating mitosis. In mitosis (division), there are four successive phases called prophase, metaphase, anaphase, and telophase that are accompanied by cytoplasmic division (cytokinesis) giving rise to two daughter cells. For the most part, upon completion of the process, each daughter cell contains the same genetic material as the original parent cell.

In addition to these specific stages, the G0 phase has been described for cells that exit from the cell cycle and enter a quiescent, non-dividing state. In response to external stimuli, some quiescent cells may undergo reactivation and express early response genes. The G0-G1 transition is marked by cell growth with measurable increases in newly-synthesized RNAs and proteins. This transition is reflected by the increased forward-scattered light signals (blast transformation) and by the expression of early cell-surface activation antigens (eg, CD69 and IL-2Ra/CD25) on cells as detected by immunofluorescent staining and flow cytometric analysis of lymphocytes.

Determination of the frequency and the nature of cells that synthesize DNA and progress through the cell cycle is crucial for better understanding of the cellular basis of such responses in health and disease. Multiple techniques are available to measure proliferative responses by cells. Techniques utilizing immunofluorescence, flow cytometry, and immunohistochemistry have grown in importance because of their capacity to determine the cell cycle status or tissue localization of individual cells within proliferating populations.



Figure 25. Cell Cycle phases

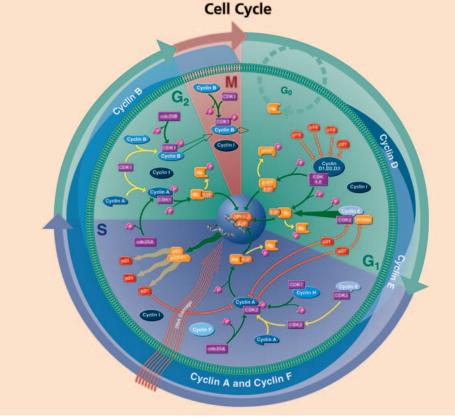


Figure 24. Cell Cycle overview

Cell Number

DNA (fluorescence intensity)

Figure 26. Analysis of cellular DNA content.

Cell Cycle and Proliferation

Analysis of Cellular DNA Content

- Flow cytometric analysis of cell cycle
- Compatible with multicolor analysis of other antigens
- Amenable to 96-well plate analysis

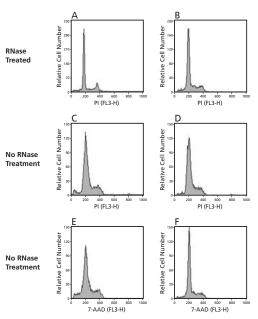
A number of fluorescent probes have been developed for the flow cytometric analysis of cycling cells.¹ The prototype for single-color flow cytometric analysis of cycling cells uses a fluorescent nucleic acid dye, such as propidium iodide (PI), to stain the total cellular DNA content. This sort of staining generates characteristic cellular DNA content profiles as shown in *Figure 27*. These histograms can be separated into regions that represent cells within G0/G1, S, and G2/M phases of the cell cycle. Cells in the G0/G1 phase (before DNA synthesis) have a defined amount (1×) of DNA (ie, a diploid chromosomal DNA content). During S phase (DNA synthesis), cells contain between 1× and 2× DNA levels. Within the G2 or M phases (G2/M), cells have a 2× amount of DNA (ie, a tetraploid chromosomal DNA content). In this way, it is possible to identify the proportion of cells in each of the three interphase stages of the cell cycle.

A protocol for staining DNA for cell cycle analysis with propidium iodide can be found in the technical data sheet for related products, in chapter 9 of *Techniques for Immune Function Analysis: Application Handbook 1st Edition* or on our web site: www.bdbiosciences.com/pdfs/manuals/02-8100055-21-A1.pdf

Cell cycle analysis with propidium iodide can be done using the BD FACSArray[™] bioanalyzer, in a 96-well format. A detailed protocol is available in the Application Notes section if our web site: www.bdbiosciences.com/literature (download page)

bdbiosciences.com/pdfs/whitePapers/04-7900030-20-A1.pdf

Propidium Iodide


Propidium iodide (PI) is the most widely used fluorescent dye for staining DNA in whole cells or isolated nuclei.^{2,3} PI intercalates into the DNA helix of fixed and permeabilized cells. Because PI can stain both double-stranded RNA (dsRNA) and DNA (dsDNA), cells must be treated with RNase to ensure that PI staining is DNA specific. BD Biosciences – Pharmingen offers PI/RNAse staining buffer suited for this purpose (Cat. No. 550825). PI does not cross the intact plasma membrane of viable cells. However, PI can readily enter dead cells, cells in late stages of apoptosis, or fixed cells, that have damaged plasma membranes. For this reason, PI is also widely used as a discriminator of live and dead cells in experiments using immunofluorescent staining of unfixed cells with flow cytometric analyses. For this purpose, BD Biosciences – Pharmingen offers a Propidium Iodide Staining Solution (Cat. No. 556463).

7-aminoactinomycin D (7-AAD)

7-AAD is a DNA-specific dye that can be used for staining fixed and permeabilized cells to determine the DNA content profiles of cell populations in multicolor flow cytometric analyses.^{2,4}

7-AAD can be used in the multicolor analysis of cellular DNA content (cell cycle status), and two or more florescent label antibodies and with BrdU staining.

7-AAD will not enter live cells but will readily stain dead cells. For this reason, 7-AAD is also used as a live–dead cell discriminator for flow cytometric analyses. A solution of 7-AAD for viability staining is available from BD Biosciences – Pharmingen as BD Via-Probe[™] (Cat. No. 555815).

Figure 27. DNA content histograms: PI versus 7-AAD. Cells from two mouse T cell lines, MGG3 (panels A, C, and G) and C20.4 (panels B, D, and F), were harvested, washed $1 \times$ with staining buffer, and fixed with ice-cold 70% ethanol (4°C, 1 hr). Cells were then washed to remove ethanol. Panels A and B: Cells were treated with 100 µg of RNase A (30 min, 37°C) and were stained with 10 µg/ml of PI. Panels C and D: Cells were not treated with RNase A before PI staining. Panels E and F: Cells were stained with 10 µg/ml 7-AAD. Notice that PI staining with RNase treatment (Panels A and B) gives a very clean DNA profile compared to no RNase treatment (Panels C and D). The DNA profiles obtained by 7-AAD staining of these same cells can be more variable with either higher (Panel E) or similar (Panel F) CV's when compared with the corresponding patterns for RNase-treated, PI-stained cells. Because of this variability, 7-AAD is not recommended as the first choice for single-color DNA content analysis

DESCRIPTION	FORMAT	APPS	SIZE	CAT. NO.	
Propidium lodide Staining Solution	Solution	FCM	2 ml	556463	
7-AAD Staining Solution	Solution	FCM	2 ml	559925	
PI/RNase Staining Buffer	Solution	FCM	100 ml	550825	

PI is excited by the 488 nm wavelength of light with broad emission centered around 617 nm.

7-AAD is excited by the 488 nm/ 530 nm wavelength of light with emission peak around 650 nm

References

- Cell organization, subcellular structure, and cell division. 1995. In Molecular Cell Biology. Third Edition. H. Lodish, D. Baltimore, A. Berk, S. L. Zipursky, P. Matsudaira, and J. Darnell, eds. W. H. Freeman and Company, New York, pp. 141–188.
- Crissman, H. A., and J. A. Steinkamp. 1987. Multivariate cell analysis. Techniques for correlated measurements of DNA and other cellular constituents. In *Techniques in Cell Cycle Analysis*. J. W. Gray, and Z. Darzynkiewicz, eds. Humana Press, Clifton, New Jersey, 163–206.
- Noguchi, P. 1991. Use of flow cytometry for DNA analysis. In *Current* Protocols in Immunology. J. Coligan, A. Kruisbeek, D. Margulies, E. Shevach, and W. Strober, eds. Green Publishing Associates and Wiley-Interscience, New York. Section 5.7.1–5.7.4
- 4. Rabinovich, P. R. Torres, and D. Engel. 1986. Simultaneous cell cycles analysis and two-color surface immunofluorescence using 7-amino-actinomycin D and single laser excitation:Applications

BD CycleTEST[™] PLUS DNA Reagent Kit

The BD CycleTESTTM PLUS DNA Reagent Kit provides a set of reagents for isolating and staining cell nuclei from fresh or frozen solid tissue specimens, or cell suspensions. Flow cytometric analysis of differentially stained normal and tumor cells is used for the identification of abnormal DNA stemlines and to estimate the DNA index (DI) and cell cycle phase distributions of these stemlines.

Uniform suspensions of single nuclei are prepared for DNA staining and flow cytometric analysis from surplus solid tissue specimens or cell suspensions. The BD CycleTEST PLUS assay involves dissolving the cell membrane lipids with a nonionic detergent, eliminating the cell cytoskeleton and nuclear proteins with trypsin, digesting the cellular RNA with an enzyme, and stabilizing the nuclear chromatin with spermine. Flow cytometric DNA stemlines analysis is being used for characterizing clonal diversity and researching the potential for clinical progression of these human neoplasms.

For detailed information regarding the kit and procedures please view the *technical data sheet* (Cat. No. 340242) online at www.bdbiosciences.com.

DESCRIPTION	FORMAT	APPS	SIZE	CAT. NO.
BD CycleTEST PLUS DNA Reagent Kit		FCM	40 tests	340242

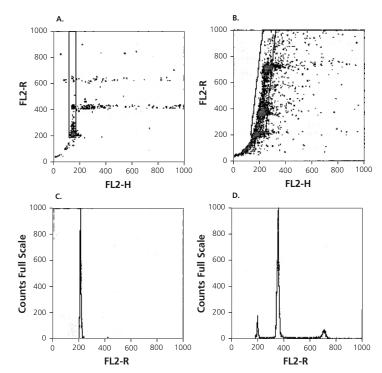


Figure 28. (A) Peripheral blood mononuclear cells (PBMCs): FL2- Width versus FL2-Area dot plot showing a singlet gate, which excludes aggregates. PBMCs may be mixed with tumor samples as an internal control. (B) Breast tumor tissue: FL2-Width versus FL2-Area dot plot showing a singlet gate, which excludes aggregates. (C) FL2-A DNA histogram of PBMCs, which has been gated to exclude aggregates. (D) FL2-A DNA histogram of breast tumor tissue, prepared by in vitro FNA, which has been gated to exclude aggregates.

Cell Cycle and Proliferation

Cell Proliferation Assays

Determination of S Phase Activity using Bromodeoxy-Uridine

A method to measure *de novo* DNA synthesis is the analysis of cellular incorporation of bromodeoxy-uridine (BrdU), an analog of the DNA precursor thymidine, during S (DNA synthesis) phase. The incorporated BrdU can be readily detected by anti-BrdU-specific antibodies (that do not recognize thymidine). The BrdU-positive cells can then be detected by flow cytometry or immunohistochemistry.

BD Biosciences – Pharmingen offers BrdU detection kits for flow cytometry and immunohistochemistry. These kits do not employ harsh DNA denaturing agents in the cell preparation and staining protocols, making them compatible with multicolor fluorescent and/or immunohistochemical staining.

BrdU Flow Kits

- Flow cytometric analysis of cell proliferation and cell cycle
- Compatible with multicolor analysis of other antigens
- Amenable to 96-well plate analysis

Flow cytometric analysis of immunofluorescent staining of incorporated bromodeoxyuridine (BrdU) enables determination of the frequency and nature of individual cells that have synthesized DNA in the course of a specific time interval. The incorporated BrdU can be detected with specific fluorescence-labeled anti-BrdU antibodies. The BrdU staining can be combined with a dye that binds to total DNA, such as 7-AAD. With this combination, twocolor flow cytometric analysis enables characterization of cells that have actively synthesized DNA (BrdU incorporation) with their cell cycle position (ie, G0/1, S, or G2/M phases as defined by 7-AAD staining intensities).

Prolonged exposure of cells to BrdU allows for the identification and analysis of actively-cycling, as opposed to non-cycling, cell fractions. Pulse-labeling of cells with BrdU at various time points permits a detailed examination of cell cycle kinetics in *in vitro* and *in vivo* labeling systems.

Importantly, the BD Pharmingen[™] BrdU Flow Kit is that it provides reagents for immunofluorescent BrdU staining with a protocol that is compatible with the use of additional fluorescent antibodies specific for other cellular molecules. Cell surface antigens or intracellular proteins (eg, cytokines or cyclins) whose expression or activity may be related to the cell's activation, entry and progression through cell cycle, or cell death can be detected together with BrdU staining. This is possible, because the BrdU Flow Kit staining protocol avoids DNA-denaturing agents such as acid, ethanol, and high temperatures that can change cellular light-scattering characteristics and limit the recognition of antigens by fluorescent antibodies.¹⁻³ The kit ensures consistent results by providing detailed instructions and all critical reagents necessary to implement the staining protocol.

Detailed protocols for BrdU incorporation and staining can be found in the respective user manuals, available at www.bdbiosciences.com/literature (download page). www.bdbiosciences.com/pdfs/manuals/02-8100055-21-A1.pdf

To support high throughput analysis of proliferating cells, we have developed a BrdU staining protocol utilizing 96-well, U-bottom plates, which can be used on BD flow cytometers equipped with a plate loader, or using the new BD FACSArray[™] bioanalyzer. For more details, refer to the article in *HotLines v. 8, No. 3 (Winter 20004)* (available on the literature download page). www.bdbiosciences.com/pdfs/newsletters/03-7900030-36-A1.pdf

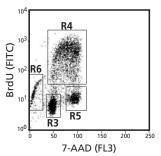
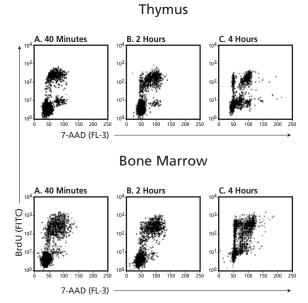



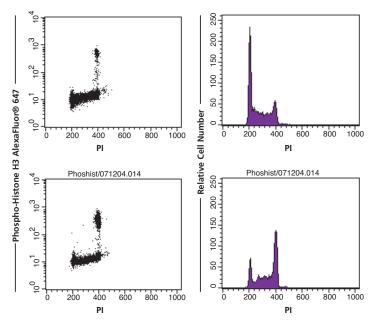
Figure 29. BrdU and 7-AAD coexpression profile for an actively-proliferating cell population. D10.G4.1 T cells were pulsed with 10 μ M BrdU for 30 minutes. The cells were then stained for BrdU and 7-AAD using the BrdU Flow Kit and analyzed by flow cytometry. As shown by the boxed region gates, significant proportions of cells are found to occupy distinct cell cycle phases including G0/G1, S, and G2/M. Region 6 identifies apoptotic cells as determined by their sub-GO/G1 levels of DNA (stained by 7-AAD), Region 3 shows cells within the G0/G1 phases (39%) of the cycle, whereas Region 4 includes BrdU⁺ or S phase cells (39%), with Region 5 showing cells that occupy the G2/M phases (14%).

Figure 30. Detection of in vivo-cycling cells. C57BL/6 mice were injected *i*.p. with 1 mg BrdU in solution for various time intervals. Animals were sacrificed at 40 minutes, 2 hours, and 4 hours post injection. Thymus and bone marrow cell suspensions were then prepared and stained for incorporated BrdU (FITC-anti-BrdU) and total DNA (7-AAD) levels. The 40-minute time point shows the characteristic "horseshoe" pattern that is seen for cell populations that are pulsed with BrdU for a short time. Cells from mice that were pulsed for 2 hours also show the horseshoe pattern. However, another cell population of G0/G1 cells that has incorporated BrdU and has returned to the G0/G1 phase is now detectable. These cells are positive for BrdU but have 1× DNA levels (ie, diploid chromosomal DNA levels) as determined by their cellular DNA content (7-AAD level). The 4-hour time point has an even larger population of BrdU+ G0/G1 phase cells.

More examples of multi parameter BrdU analyses incorporating RNA dyes and staining for cell surface phenotype to determine the S phase activity of particular subpopulations can be found in Chapter 9 of *Techniques for Immune Function Analysis: Application Handbook 1st Edition* or on our web site: www.bdbiosciences.com/pdfs/manuals/02-8100055-21-A1.pdf

Phosphorylation of Serine 10 in Histone H3

Cells protect DNA by organizing it as a higher-order nucleoprotein complex termed chromatin. Eukaryotic cells have a mechanism for condensing and decondensing chromatin.¹ Chromatin condensation is particularly evident during mitosis and cell death induced by apoptosis. Chromatin decondensation is necessary for DNA replication, repair, recombination, and transcription. Histones are among the numerous DNA-binding proteins that control the level of DNA condensation. Post-translational modification of histone tails plays a critical role in the dynamic condensation/decondensation that occurs during the cell cycle. Phosphorylation of the serine 10 residue of the N-terminal tail of histone H3 is crucial for chromosome condensation and cell-cycle progression during mitosis and meiosis.²


Histone H3 phosphorylation at Ser 10 begins during prophase, with peak levels detected during metaphase, ultimately followed by a general decrease in the amount of phosphorylation during the progression through the cell cycle to telophase. A similar correlation can be observed during meiosis.³ In addition, activation of the MAP kinase cascade by growth factors, stimuli, stress, or UV irradiation leads to phosphorylation of H3 (Ser10) and results in the transcription of different genes, such as c-fos and c-jun.

BD Biosciences – Pharmingen introduces AlexaFluor® 647 anti-Human Histone H3 (Ser10) (clone HTA28). This antibody is suitable for flow cytometry in conjunction with a DNA dye, such as PI.

References

BrdU Flow Analysis

- 1. Wolffe, A. (1998) Chromatin: Structure and Function, Academic Press
- Gurley, L.R. et al. (1978) Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur. J. Biochem. 84, 1–15)
- 3. Wei, Y. et al. (1999) Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97, 99–109
- 3. Mahadevan, L.C. et al. (1991) Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65, 775–783

Figure 31. C20.4 cells were either untreated (upper panels) or treated (lower panels) with100 ng/ml of Colcemid (G2*M cell cycle inhibitor). Cells were subsequently fixed, permeabilized and stained with AlexaFluorR 647 – Phospho-Histone H3 versus Pl.

DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
BrdU	3D4	Purified	Ms IgG ₁ , κ	Hu	IHC(Fr), IC/FCM	0.1 mg	555627
BrdU	3D4	FITC Set	Ms IgG ₁ , κ	Hu	FCM, IC/FCM	100 tests	556028
BrdU	3D4	PE Set	Ms lgG ₁ , κ	Hu	FCM, IC/FCM	100 tests	556029
FITC BrdU Flow Kit		FITC Kit			IC/FCM	50 tests	559619
					IC/FCM	4×50 tests	557891
APC BrdU Flow Kit		PE Kit			IC/FCM	50 tests	552598
					IC/FCM	4×50 tests	557892
BrdU solution						5.0 ml	550891
L							

BD FastImmune[™] Proliferation Analysis in Whole Blood

DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
BrdU	B44	Purified	Ms IgG ₁		FCM	100 tests	347580
BrdU	B44	FITC	Ms IgG ₁		FCM	100 tests	347583
BD Fastimmune Anti-BrdU	B44	FITC	Ms IgG ₁	Hu	Prolif, FCM, IC	50 tests	340649

Proliferation of Histone H3

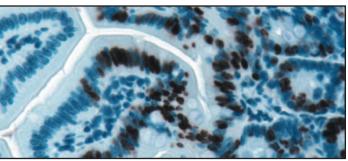
DESCRIPTION	CLONE	FORMAT	REACT	APPS	SIZE	CAT. NO.
Phosph-Histone H3 (S10)	HTA28	AlexaFluor® 647	Hu	FCM	50 tests	inquire

Cell Cycle and Proliferation

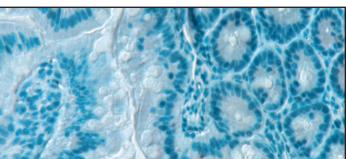
Cell Proliferation Assays (continued)

BrdU In-Situ Detection Kit

- Immunohistochemical analysis of cell proliferation in all species and fixation methods
- Preserves tissue morphology
- Compatible with immunohistochemical staining of other antigens


The BD PharmingenTM BrdU *In-Situ* Detection Kit is designed for immunohistochemical staining of incorporated BrdU in frozen sections, formalin-fixed paraffin-embedded sections, and cultured or isolated cells on slides in conjunction with staining of other antigens. The monoclonal antibody against BrdU works in all species tested (human, mouse, and rat) and provides improved specific staining with minimal background. The directly biotinylated mouse antibody eliminates the need for a species-specific secondary antibody thus allowing the *in situ* kit to be used in mouse tissues.

The BrdU *In-Situ* Detection Kit features BDTM Retrievagen A, an antigen retrieval solution designed specifically to unmask antigenic sites, preserve tissue morphology, and enable simultaneous staining of other surface antigens in conjunction with BrdU. This important feature of the kit enables study of the proliferation state of phenotypically defined cells within the micro-environment of tissues. Consistent results are assured by providing all critical reagents in addition to a comprehensive series of protocols for *in vivo* and *in vitro* studies. Control slides are provided in the kit to serve as a reference.


References

- Toba, K., E.F. Winton and R. A. Bray. 1992. Improved staining method for the simultaneous flow cytofluormetric analysis of DNA content, S phase fraction, and surface phenotype using single laser instrumentation. *Cytometry* 13:60.
- Sasaki, K., S. Adachi, T. Yamamoto, T. Murakami, K. Tanaka and M. Takahashi. 1988. Effects of denaturation with HCl on the immunological staining of bromodeoxyuridine incorprated into DNA. *Cytometry* 9:93.
- Houck, D.W. and M. R. Loken. 1985. Simultaneous analysis of cell surface antigens, bromodeoxyuridine incorporation and DNA content. *Cytometry* 6: 531.
- Cell cycle Analysis by Antobodies for Flow Cytometry, Western Blot and IHC Analysis of Cyclins, Cyclin Dependent Kinases and Cell Cycle Regulators

Α.

B.

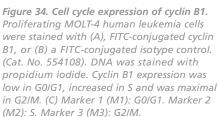
Figure 32. Immunohistochemical staining of BrdU in paraffin sections. BALBIC mice were injected with 1 mg BrdU via the intra-peritoneal route. After 24 hrs, the spleen, thymus, and gastro-intestinal tract were harvested and processed for paraffin sections. Mice injected with PBS served as the negative control. Immunohistochemical staining of BrdU was performed using the BrdU In-Situ Detection Kit on paraffin sections of the mouse gastro-intestinal tract. Proliferating cells in the crypts that incorporated BrdU can be identified by the dark brown color in their cell nuclei (A) in contrast to the control (B). Magnification 400×.

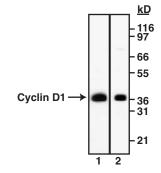
DESCRIPTION	APPS	SIZE	CAT. NO.	
BrdU <i>In-Situ</i> Detection Kit	IHC(Fr), IHC(F), IHC(Zn)	50 tests	550803	
BrdU In-Situ Detection Kit II	IHC(Zn), IHC(F), IHC(Fr)	200 tests	551321	

Analysis of Cyclins, Cyclin Dependent Kinases, and Cell Cycle Regulators

An understanding of cell cycle progression is essential for comprehension of disease pathology and for the rational design of novel drugs to adjust incorrectly regulated cell proliferation. Accelerated cell division can result in cancers that proliferate rapidly unless anti-cancer agents intervene. External stimuli can induce halt of cell cycle, quiescent state, which can eventually lead to cell death.

Progression of mammalian cell cycle is regulated by phosphorylation of many key proteins. Several classes of cyclins (A-E) interact with, and act as regulatory subunits for cyclindependant kinases (cdks).


Cyclins and cyclin-dependent kinases (cdks) are essential for cell cycle control in eukaryotes. Cyclins (regulatory subunits) bind to cdks (catalytic subunits) to form active cyclin-cdk complexes. Cdk subunits by themselves are inactive and binding to a cyclin is required for their activity. Active cyclin-cdk complexes drive cells through particular cell cycle phases, called *checkpoints*, by phosphorylating the unique sets of protein substrates essential for cells to achieve transition to the next phase.

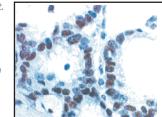

Cyclins A, B1, D, and E undergo periodic synthesis and degradation, thereby providing a mechanism to regulate cdk activity throughout the cell cycle. Cdk activity is further regulated by activating or inhibitory phosphorylation, and by small proteins (p15, p18, p19, p21, and p27), called inhibitors of cdk activity, that bind to cyclins, cdks, or cyclin-cdk complexes. BD Biosciences – Pharmingen offers an expanding line of antibodies and reagents for the analysis of cyclins, cdks, and cell cycle regulators.

Detailed protocols for the analysis of cyclins by flow cytometry are available on our web site: www.bdbiosciences.com/pharmingen/protocols/Human_Cyclins.shtml

Retinoblastoma protein (Rb) also plays a key role in the control of cell division and differentiation. Rb is a nuclear protein that undergoes cell cycle dependent phosphorylation. Underphosphorylated forms predominate in G0 and early G1, whereas more phosphorylated forms are present in S, G2 and M.

Figure 33. Western blot analysis of Cyclin D1. Lane 1, WI-38 human diploid fibroblast cell lysate; lane 2, LNCaP, a human prostate adenocarcinoma cell line. Anti-cyclin D1 (Cat. No. 554180) identifies cyclin D1 as an ~36 kD band in both cell types.

Cell Cycle and Proliferation


Cyclins and CDKs

DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
Cdc25B	23	Purified	Ms IgG ₁	Chick, Dog, Hu, Ms, Ra	IF, IHC, IP, WB	50/150 µg	610527/28
dc25C	C2-2	Purified	Ms IgG ₁	Hu	WB	0.1 mg	556576
	TC113	Purified	Ms IgG ₁	Hu	IF, IP, WB	50 µg	550920
	TC14	Purified	Ms IgG ₁	Hu	IP, WB	50 µg	550922
Cdc27	35	Purified	Ms IgG _{2b}	Dog, Hu, Ms, Rat	IF, IP, WB	50/150 µg	610454/55
Cdc34	17	Purified	Ms IgG _{2a}	Chick, Dog, Hu,	IF, WB	50/150 µg	610249/50
				Ms, Rat			
	Polyclonal	Serum	Rab	Hu	WB	0.1 ml	559679
Cdc37	Polyclonal	Serum	Rab Ig	Hu	WB	0.1 ml	558895
	15	Purified	Ms IgG ₁	Dog, Hu, Ms, Rat	IF, WB	50/150 µg	610576/77
Cdc42	44	Purified			WB		
			Ms IgG ₁	Dog, Hu, Ms, Rat		50/150 µg	610928/29
Cdk1 (p34 cdc2)	1	Purified	Ms IgG ₁	Hu, Ms, Rat	IF, IHC, IP, WB	50/150 µg	610037/38
	A-17	Purified	Ms IgG _{2a}	Hu, Ms	IP, WB	0.1 mg	554161
	Polyclonal	Serum	Rab	Hu, Ms	IP, WB	0.1 ml	558900
Cdk1 Peptide (p34 cdc2, Cdc2	2 Peptide)	Purified			Block	100 µg	610039
Cdk1/Cdc2 (pY15), Phospho-S	Specific 44	Purified	Ms IgG ₁	Hu	WB	50/150 µg	612306/07
Cdk1/Cdk2	AN21.2	Purified	Ms IgG _{2a}	Hu	WB	50/150 µg	551526/25
Cdk2	55	Purified	-	Dog, Hu, Ms, Rat	WB, IF, IHC, IP		610145/46
.unz			Ms IgG _{2a}			50/150 µg	
	Polyclonal	Serum	Rab Ig	Hu	WB	100 µl	551272
	Polyclonal	Serum	Rab Ig	Hu, Ms	IP, WB	0.1 ml	558896
Cdk5	G162-9	Purified	Ms IgG _{2a}	Hu	WB	0.1 mg	554090
Cdk7	17	Purified	Ms IgG ₁	Hu	WB	50/150 µg	611972/73
	MO-1	Purified	Ms IgG _{2b}	Hu	IF, IHC(Fr), IP, WB	0.1 mg	556345
Cyclin A	25	Purified	Ms IgG ₁	Hu	IF, WB	50/150 µg	611268/69
-,	BF683	Purified	Ms IgE	Hu	FCM, IP, WB	250 µg	554175
			-				
	BF683	Purified	Ms IgE	Hu	FCM, IP, WB	100 µg	554174
	BF683	FITC Set	Ms IgE	Hu	FCM	100 tests	554107
	BF683	PE Set	Ms IgE	Hu	FCM	100 tests	550913
	Polyclonal	Purified	Rab Ig	Chick, Hu	IF, IHC, WB	150 µg	610230
Cyclin A1	B88-2	Purified	Ms IgG ₁	Hu	WB	100 µg	556600
Cyclin B	18	Purified	Ms IgG ₁	Hu, Rat	IF, IHC, WB	50/150 µg	610219/20
	F2F4	Purified	Ms IgG ₁	Dros	WB	0.1 mg	558591
Suclin B1				Hu			
Cyclin B1	GNS-1	Purified	Ms IgG ₁		IHC(Fr), IHC(F)*	1 ml	550846
	GNS-11	Purified	Ms IgG _{2a}	Hu, Ms, Ham	FCM, IF, IP, WB	250 µg	554179
	GNS-11	Purified	Ms IgG _{2a}	Hu, Ms, Ham	FCM, IF, IP, WB	100 µg	554178
	Polyclonal	Serum	Rab	Hu	IP, WB	100 µl	558899
Cyclin B1 (a.a 1-21)	GNS-1	Purified	Ms IgG ₁	Hu, Ms	FCM, IF, IHC(F), IHC(Fr),	250 µg	554177
	GNS-1	Purified	Ms IgG ₁	Hu, Ms	IP, WB FCM, IF, IHC(F), IHC(Fr),	100 µg	554176
					IP, WB		
	GNS-1	FITC Set	Ms IgG ₁	Hu, Ms	FCM	100 tests	554108
	GNS-1	PE Set	-	Hu, Mis Hu	FCM	100 tests	550783
Curdin C			Ms IgG ₁				
Cyclin C	Polyclonal	Serum	Rab	Hu, Ms	IP, WB	100 µg	558903
Cyclin D1	DCS-6	Purified	Ms IgG _{2a}	Hu, Ms, Rat	FCM, IHC(F), IHC(Fr), IP, WB	100 µg	556470
	DCS-6	FITC Set	Ms IgG _{2a}	Hu, Ms, Rat	FCM	100 tests	556881
	G124-326	Purified	Ms IgG ₁	Hu	FCM, IP, WB	250 µg	554181
	G124-326	Purified	Ms IgG ₁	Hu	FCM, IP, WB	100 µg	554180
	G124-326	FITC Set	Ms IgG ₁	Hu	FCM	100 tests	554109
Viclin D1 Pocombinant U.		inc set	1415 190 ₁	114			
Cyclin D1 Recombinant Huma		Dunifi I	Mat C	11	WB	0.5 ml	554319
Cyclin D2	G132-43	Purified	Ms IgG _{2a}	Hu	IP, WB	250 µg	554201
	G132-43	Purified	Ms IgG _{2a}	Hu	IP, WB	100 µg	554200
Cyclin D3	1	Purified	Ms IgG _{2b}	Dog, Hu, Ms, Rat	IF, IHC, IP, WB	50/150 µg	610279/80
	G107-565	Purified	Ms IgG ₁	Hu	FCM, IF, IP, WB	100 µg	554195
	G107-565	FITC Set	Ms IgG ₁	Hu	FCM	100 tests	554111
Cyclin E	HE12	Purified	Ms IgG ₁	Hu	FCM, WB	50/150 µg	551159/60
., L						10	
	HE67	Purified	Ms IgG _{2b}	Hu	IP, IVK	250 µg	554193
	HE67	Purified	Ms IgG _{2b}	Hu	IP, IVK	100 µg	554192
Cyclin F	B74-2	Purified	Ms IgG ₁	Hu	WB	100 µg	556598
Cyclin G1	Polyclonal	Serum	Rab	Hu	WB	200 µl	550782
Cyclin H	G301-1	Purified	Ms IgM	Hu	WB	100 µg	554133
Cyclins D1/D2/D3	G124-259	Purified	Ms IgG ₁	Hu	FCM, IP, WB	100 µg	554203
.,	G124-259	Purified	Ms IgG ₁	Hu	FCM, IP, WB	250 µg	554204
	G124-259	FITC Set	Ms IgG ₁	Hu	FCM		
						100 tests	554112

p53, p21, p19, and p18

DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
p18	A33-1	Purified	Ms IgG ₁	Ms	IP, WB	0.1 mg	556392
p19	3B6	Purified	Ms IgG ₁	Hu, Ms	IP, WB	0.1 mg	556426
p21	18A10	Purified	Ms IgG _{2b}	Hu	IP, WB	0.1 mg	554229
	2G12	Purified	Ms IgG ₁	Hu	IHC(P), IP, WB	0.1 mg	554262
	6B6	Purified	Ms IgG ₁	Hu	IHC(Fr), IHC(F)*	1 ml	550833
	6B6	Purified	Ms IgG ₁	Hu	IHC(Fr), IHC(P), IP, WB	0.1 mg	554228
	Polyclonal	Serum	Rab	Ms	IP, IVK, WB	0.1 ml	554085
	SX118	Purified	Ms IgG ₁	Hu, Ms, Rat	IF, IHC(Fr), IHC(P), IP, W	'B 0.1 mg	556430
	SX118	Purified	Ms IgG ₁ , κ	Hu	IHC(Fr), IHC(F)*	1 ml	550827
	SXM30	Purified	Ms IgG ₁	Hu, Ms, Rat	IF, IHC(Fr), IHC(P), IP, W	'B 0.1 mg	556431
p53	80	Purified	Ms IgG _{2b} , κ	Dog, Hu	IF, IP, WB	50/150 µg	610183
	DO-1	Purified	Ms IgG _{2a}	Hu, Bov	IHC(F), IHC(Fr), IP, WB	0.1 mg	554293
	DO-7	Purified	Ms IgG _{2b}	Hu, Monk, Bov	FCM, IHC(F), IHC(Fr),	0.1 mg	554294
					IP, WB		
	DO-7	Purified	Ms IgG _{2b}	Hu	IHC(Fr), IHC(F)*	1 ml	550831
	DO-7	Biotin	Ms IgG _{2b}	Hu, Monk, Bov	IHC(F)	0.5 mg	554295
	DO-7	FITC Set	Ms IgG _{2b}	Hu, Monk, Bov	FCM	100 tests	554298
	DO-7	PE Set	Ms IgG _{2b}	Hu, Monk, Bov	FCM	100 tests	556534
	G59-12	Purified	Ms IgG ₁	Hu	IHC(Fr), IHC(F)*	1 ml	550832
	G59-12	Purified	Ms IgG ₁	Hu, Ms, Rat	IHC(F), IHC(Fr), IP, WB	0.1 mg	554157
	G59-12	PE Set	Ms IgG ₁	Hu, Ms, Rat	FCM	100 tests	557027
	G59-12	FITC Set	Ms IgG ₁	Hu, Ms, Rat	FCM	100 tests	557026
	PAb 122	Purified	Ms IgG _{2b}	Hu, Ms, Rat,	FCM, IF, IP, WB	0.1 mg	554147
				Monk, Ham			
	PAb 1801	Purified	Ms IgG ₁	Hu	IF, IHC(Fr), IHC(P), IP, W	'B 0.1 mg	554169
	PAb 1801	Purified	Ms IgG ₁	Hu	IF, IHC(Fr), IHC(P), IP, W	B 0.25 mg	554170
	PAb 240	Purified	Ms IgG ₁	Hu, Ms, Rat, Ham,	IHC(Fr), IP, WB	0.1 mg	554166
	PAb 240	Purified	Ms IgG ₁	Monk, Bov, Chick Hu, Ms, Rat, Ham,	IHC(Fr), IP, WB	0.25 mg	554167
		. annea		Monk, Bov, Chick			

Figure 35. Anti-human p53, (Cat. No. 554294). Formalin-fixed, paraffin-embedded tissue section of human breast carcinoma stained with antihuman p53 (clone DO-7) using a DAB chromogen and Hematoxylin counterstain.

Figure 36. Profile of permeabilized HT-29 colon adenocarcinoma cells analyzed on a FACScanTM (BDIS, San Jose, CA). Cells were stained with anti-p53 PE (clone G59-12) or with an IgG_1 isotype control (Cat. No. 557027).

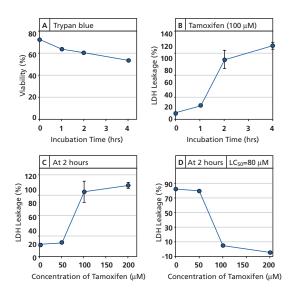
Retinoblastoma Protein (Rb)

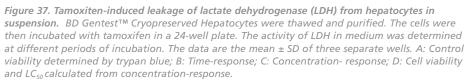
DESCRIPTION	CLONE	FORMAT	ISOTYPE	REACT	APPS	SIZE	CAT. NO.
Rb (a.a. 1-240)	G99-2005	Purified	Ms IgG ₁	Hu	IP, WB	0.1 mg	554162
Rb (a.a. 300-380)	C36	Purified	Ms IgG ₁	Hu, Chick	GS, IHC(Fr), IP, WB	0.1 mg	554142
Rb (a.a. 300-380)	G3-349	Purified	Ms IgG ₁	Hu	IP, WB	0.1 mg	554140
Rb (a.a. 300-380)	G4-340	Purified	Ms IgG ₁	Hu	IP, WB	0.1 mg	554141
Rb (a.a. 300-508)	2	Purified	Ms IgG _{2a}	Chick, Hu	IF, WB	50/150 µg	610884
Rb (a.a. 332-344)	G3-245	Purified	Ms IgG ₁	Ms, Rat, Hu, Monk, Qua, Mink	FCM, GS, IF, IHC(F), IP, WB	0.1 mg	554136
Rb (a.a. 332-344)	G3-245	Purified	Ms IgG ₁	Ms, Rat, Hu, Monk, Qua, Mink	IHC(Fr)	1 ml	550830
Rb (a.a. 332-344)	G3-245	FITC Set	Ms IgG ₁	Ms, Rat, Hu, Monk, Qua, Mink	FCM	100 tests	556538
Rb (a.a. 332-344)	G3-245	PE Set	Ms IgG ₁	Ms, Rat, Hu, Monk, Qua, Mink	FCM	100 tests	556539
Rb (a.a. 393-572)	XZ104	Purified	Ms IgG ₁	Hu, Ms, Chick	IP	0.1 mg	554143
Rb (a.a. 443-622)	XZ55	Purified	Ms IgG ₁	Hu, Ms, Chick, Xen, Qua	GS, IP, WB	0.1 mg	554144
Rb (a.a. 444-535)	XZ91	Purified	Ms IgG _{2a}	Hu, Chick, Mink	IF, IP, WB	0.1 mg	554145
Rb (a.a. 622-665)	XZ133	Purified	Ms IgG ₁	Hu, Ms, Chick	IP	0.1 mg	554146
Underphosphorylated Rb	G99-549	Purified	Ms IgG ₁	Hu	IP, WB	0.1 mg	554164
(a.a. 514-610)	G99-549	FITC Set	Ms IgG ₁	Hu	FCM	100 tests	550501
	G99-549	PE Set	Ms IgG ₁	Hu	FCM	100 tests	550502

Toxicology

ADME/TOX

During the development of a new drug, it is important to investigate the potential adverse effects the drug might have. Prior to clinical testing of a drug candidate on patients, toxicology studies are conducted in cell lines or in laboratory animals, primarily rats, dogs, and non-human primates.


BD Biosciences – Discovery Labware combines expertise and state-of-the-art toxicity detection technologies to help identify better, safer drugs faster.


Toxicity testing using BD Gentest[™] hepatocytes and cell lines expressing P450 enzyme toxicity is a critical area of concern for drug candidates. Compounds may exhibit intrinsic toxicity or must undergo metabolic activation by cytochrome P450 or other enzymes to manifest toxicity.

Hepatotoxicity is a major cause of drug candidate failure, both pre- and post-market launch. Two tests for the potential of drug candidate-induced hepatocyte toxicity are available: 1) measurement of ATP content and 2) leakage of lactate dehydrogenase (LDH).¹ Both tests are conducted using hepatocytes, the "gold standard" for analyzing toxicity *in vitro*. These tests serve as independent means to determine cytotoxicity with cell viability as the endpoint.

In both tests, the concentration of drug candidate needed to cause 50% cell toxicity/death to human hepatocytes is determined. The number and spacing of drug concentrations are flexible for these tests. BD Biosciences also offers testing using hepatocytes from other preclinical species.

For complete list of products and services for BD GentestTM, please go to the web site: www.bdbiosciences.com/discovery_labware/gentest/products/

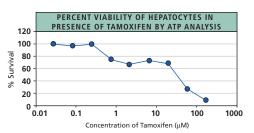
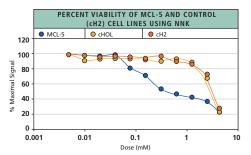



Figure 38. BD Gentest™ Cryopreserved Human Hepatocytes were thawed and purified using the BD Gentest Cryopreserved Hepatocyte Purification Kit (Cat. No. 454500). Cells were resuspended in MEM and incubated with tamoxifen over a four-hour time period. The concentration of ATP was determined using a chemiluminescent assay (Perkin Elmer). The representative data are the mean of four separate wells. The experiment was performed in triplicate.

Figure 39. The IC_{50} values calculated for MCL-5 cells by linear interpolation was determined to be 150 nM NNK. The cH2 cells demonstrated a 30% inhibition at 480 nM NNK whereas the IC_{50} values for control cells were >200 μ M.

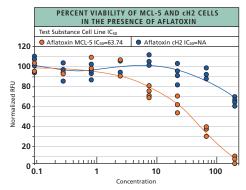
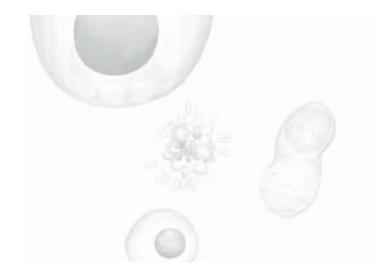


Figure 40. The IC₅₀ value was generated using the BD Gentest™ MPM/ADMET Software Program and a 4-parameter fit model. The cH2 cells demonstrated 20% inhibition at 200 nM aflatoxin after 72 hours of exposure

Toxicity Testing in a Human Cell Line Engineered to Express P450

The BD Gentest[™] Metabo-Tox Assay Kit is designed to assess P450-mediated toxicity. Using our MCL-5 cell line that expresses five human P450 enzymes (CYP 1A1, 1A2, 3A4, 2A6, and 2E1) and epoxide hydrolase, BD Biosciences has created a toxicity assay that is consistent over time and also avoids the variations in P450 expression that occur when using human hepatocytes.² The human P450s incorporated into the MCL-5 cell line are the major P450s implicated in creating toxic metabolites. The MCL-5 assay can differentiate between parent and metabolite toxicity in one assay by comparing IC50 values with the control cell line cH2, which does not contain the transfected genes.


The kit measures oxygen respiration as an indicator of cell viability,³ although other assays such as ATP detection are available. The number and spacing of drug concentration is flexible.

In vitro techniques based on cDNA-expressed enzymes, human tissue and cells, allow researchers to screen for drug-drug interactions, metabolic stability, and bioavailablity early in the drug development process. BD Gentest[™] Contract Research Services combine our expertise and innovative products to help you identify better drugs faster. We offer many contract services that help the sponsor address important drug metabolism concerns during the drug discovery and development processes. Many of these tests can be performed in accordance with Good Laboratory Practices (GLP) regulations.

For complete information regarding BD Gentest products and services, please visit the web site: www.bdbiosciences.com/discovery labware/gentest/products

References

- 1. Tirmenstein M.A., *et al.* Glutathione depletion and the production of reactive oxygen species in isolated hepatocyte suspensions. *Chemico-Biological Interactions*.127:201 (2000).
- Crespi, C.L., et al. A metabolically competent human cell line expressing five cDNAs encoding procarcinogenactivating enzymes: application to mutagenicity testing. Chem. Res. Toxicol. 4:566 (1991).
- Wodnicka, N., et al., Novel fluorescent technology platform for high throughput cytotoxicity and proliferation assays. J. Biomol. Screen. 5:141 (2000).

Products and Services

DESCRIPTION	CAT. NO.
MCL-5 Metabo-Tox Assay Kit*	459600
* Product of BD Biosciences – Discovery Labware. Please order accordingly.	

Contract and Research Services

DESCRIPTION	CAT. NO.
Hepatocyte Toxicity*	inquire
Tosxicity Testing in a Human Cell Line Engineered to Express P450*	inquire

* Product of BD Biosciences - Discovery Labware. Please order accordingly.

Summary of IC50 Values for Metabolism-dependent Toxins

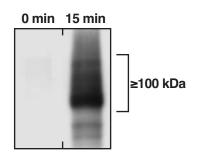
TEST SUBSTRATE	CHOL CELLS	cH2 CELLS	MCL-5 CELLS	MAJOR P450'S
Benzopyrene	8% toxicity > 20 μ M	8% toxicity > 20 µM	1.6 µM	1A1, 3A4, 1B1
Aflatoxin	20% toxicity > 200 μ M	N/D	47.9 μM	3A4, 1A2, 1A1
NNK	25% toxicity > 480 μM	29% toxicity > 480 μ M	153.5 µM	2A6, 2E1, 2D6
Dibenzopyrene	10% toxicity > 200 μ M	N/D	2.27 μM	1A1, 3A4, 1A2
Acetaminophen (50 μM BSO pretreated)	2.48 mM	2.9 mM	1.2 mM	2E1, 3A4, 1A2
PhIP	110.3 μM	111.2 μM	21.28 µM	1A1
Cyclophosphamide	5.4 mM	5.5 mM	2.83 mM	2B6, 3A4

Toxicology

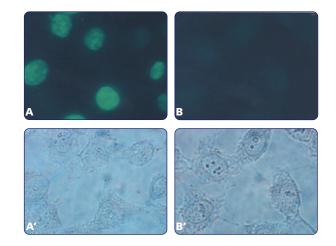
Genotoxicology

DNA Damage Antibodies

Cellular DNA is continually exposed to a wide variety of exogenous and endogenous factors that can alter the DNA sequence. One estimate indicates our cells are subjected to several thousand DNA alterations per day. For this reason, a variety of DNA repair pathways have evolved to protect cells and to maintain genomic stability.


Mammalian cells can take advantage of a variety of DNA repair pathways, which include base excision repair (BER), mismatch repair, recombinational repair, postreplication repair, and nucleotide excision repair (NER). Deficiencies in these DNA repair pathways are implicated in the pathogenesis of various human diseases and conditions, such as cancer and aging. This may be due to the fact that these DNA repair pathways interact with a number of cell signaling pathways, and are involved in cell cycle regulation and transcription.

One mechanism whereby eukaryotic cells respond to DNA damage is the synthesis of poly ADPribose (PAR). PAR is synthesized after activation of the DNA repair enzyme poly (ADP-ribose) polymerase (PARP). Upon DNA damage, PARP binds to DNA strand breaks and catalyzes the addition of long branched chains of PAR to a number of nuclear proteins, including topoisomerases, histones, and PARP. The amount of PAR formed in living cells with DNA damage is commensurate with the extent of the damage.


A recent study demonstrated the presence of a PAR-binding sequence in a number of molecules that are characterized as DNA damage checkpoint proteins including p53, p21CIP1/WAF1, xeroderma pigmentosum group A complementing protein, MSH6, DNA ligase III, XRCC1, DNA polymerase e, DNA-PKCs, Ku-70, NF- κ B, inducible nitric oxide synthase, caspase-activated DNase, and telomerase.

BD Biosciences offers a comprehensive selection of antibodies and reagents which can be used in a variety of applications to evaluate the processes involved in DNA damage and repair.

Figure 41. Western blot analysis of PAR. Lysates from HeLa cells that were either left untreated (0 min) or treated with H_2O_2 (15 min), washed in PBS, and probed with anti-poly ADP-ribose (L96-10). PAR identifies bands greater than 100 kDa.

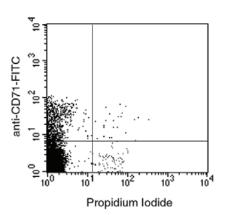
Figure 42. Immunofluorescence staining of PAR. HeLa cells were either treated with H_2O_2 [A] or left untreated [B], washed in PBS, and fixed in MEOH/acetone. Following fixation, cells were permeabilized and then stained with purified anti-poly ADP-ribose (clone 10H, Cat. No. 550781). Cells were washed in PBS and incubated with FITC-conjugated goat antimouse secondary antibody (Cat. No. 554001). Cells were then washed 5× in PBS and visualized by immunofluorescence microscopy. A' and B' represent phase contrast correlates of A and B, respectively.

DNA Damage and Repair Antibodies Product List

SPECIFICITY	CLONE	APPLICATION	SIZE	CAT. NO.
AOX1	7	WB	50/150 µg	611494/95
BRCA-1	42	WB	50/150 µg	611842/3
BRCA-1	Polyclonal	IP, WB	100 µl	556443
BRCA-1	Polyclonal	IP, WB	100 µl	556445
BrdU	3D4	FC	100 µg	555627
BrdU FITC Set	3D4	FC	100 tests	556028
BrdU PE Set	3D4	FC	100 tests	556029
Cdc25C	C2-2	WB	100 µg	556576
Cdc25C	TC113	WB, IP, IF	50/150 µg	550920/1
Cdc25C	TC14	WB, IP	50 µg	550922
CHD3	44	WB, IF	50/150 µg	611846/7
Chk2	19	WB, IF	50/150 µg	611570/1
DNA Ligase III	7	WB	50/150 µg	611876/7
DNA-PK (p350)	4F10C5	IP, WB	100 µg	556456
DNA-PKcs (p350)	6	WB, IHC, IF	50/150 µg	610804/5
DNA Polymerase ∂	22	WB, IF	50/150 µg	610972/3
DNA Polymerase e Catalytic	34	WB, IF	50/150 μg	611238/9
DNA Topoisomerase I	C-21	WB	100 µg	556597
ERCC1	8F1	WB	100 µg	556452
FEN-1	21	WB, IF	50/150 μg	611294/5
hHR23B	16	WB, IF	50/150 μg	611018/9
Ku-70	15	WB, IF	50/150 μg	611892/3
Ku-70/80 Heterodimer	162	IP, FC, E	100 µg	556460
Ku-80	102	IP, WB, IF, IHC		556429
Ku-80	7	WB, IF	100 µg 50/150 µg	611360/1
MDM2	SMP14	IP, WB		
		•	100 µg	556353
MGMT	MT5.1	IP, WB, FC, IHC IP	100 µg	557045
MLH1	G168-728		100 µg	554073
Mre11	18	WB, IF	50/150 µg	611366/7
MSH2	G219-1129	WB, IHC	100 µg	556349
MSH2	27	WB, IF	50/150 µg	610360/1
MSH3	52	WB, IF	50/150 ug	611390/1
MSH6/GTBP	44	WB, IF	50/150 µg	610918/9
NBS1	34	WB, IF	50/150 µg	611870/1
PAR	10H	IF	50 µg	550781
PARP	C2-10	WB, IF	100 µl	556362
PARP	4C10-5	WB, FC, IP	100 µg	556494
PARP	42	WB, IF	50/150 µg	611038/9
PCNA	PC10	IHC, IF, FC	100 µg	555566
PCNA FITC Set	PC10	FC	Kit	556030
PCNA PE Set	PC10	FC	Kit	556031
PCNA	24	WB, IHC, IF	50/150 µg	610664/5
PMS2	A16-4	IP, WB	100 µg	556415
PMS2	37	WB	50/150 µg	610338/9
Rad50	13	WB, IF	50/150 µg	611010/1
hRad9	56	WB, IF	50/150 µg	611324/5
RCC1	9	WB, IF, IHC	50/150 µg	610377/8
Ref-1	15	WB, IF	50/150 µg	610816/7
RNase HI	30	WB, IF	50/150 µg	611356/7
Superoxide Dismutase	G215-1	WB	100 µg	556360
ТорВР1	33	WB, IF	50/150 µg	611874/5
TRF2	36	WB, IF	50/150 µg	611200/1
WRN	30	WB, IF	50/150 µg	611168/9
VDA	12F5	IP, WB	100 µg	556453
XPA				
XPA	19	WB, IF	50/150 µg	611828/9

Toxicology

LicroFlow® Micronucleus Analysis Kits


- Ideal for pre-IND and drug discovery
- High-throughput analysis of cytogenetic damage *in vivo*
- Biological standards are included to guide instrument set-up
- Easy-to-use kit format
- Fast: get results within seven days using the µicroFlow^{BASIC} service, or analyze 20,000 RETs per sample in just minutes with µicroFlow^{PLUS}

The micronucleus assay is an established method for studying *in vivo* chromosomal damage. It is based on the observation that displaced chromatin, resulting from chromosome loss or breakage, may fail to be incorporated into daughter nuclei as a cell divides. The resulting "micronucleus" is found in the cytoplasm. Elevations in the frequency of micronuclei (MN) are indicative of genotoxic activity.

The μ icroFlow® Micronucleus Analysis Kits are designed to measure MN events in peripheral blood cells of rodents. During erythropoiesis, an erythroblast expels its main nucleus to become a reticulocyte (RET), while the MN remain in the cytoplasm. The newly formed RET is then released from the bone marrow into the circulating bloodstream, where it develops into a normochromatic erythrocyte (NCE). The μ icroFlow® kits are based on a RET-specific cell surface marker, CD71, which differentially labels immature erythrocytes. When fixed peripheral blood cells are appropriately treated, NCEs and RETs with and without MN are easily resolved and quantified by flow cytometry. These kits measure the frequency of each cell population of interest (%RET, %MN-RET, %MN-NCE).

µicroFlow^{BASIC} and µicroFlow^{PLUS} kit utilize flow cytometry, which enables the high throughput analysis of many more cells per sample relative to microscopy-based MN scoring. The result is greater precision, higher sensitivity, and a quicker turn-around time.

The µicroFlow^{PLUS} kit provides the reagents required to collect, fix, and analyze mouse or rat blood in your laboratory, while the µicroFlow^{BASIC} kit provides the reagents needed to collect, fix, and ship mouse or rat blood samples to Litron Laboratories for evaluation (customers are provided with all raw data and calculated cell population frequencies).

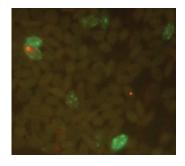


Figure 43. FITC and PI staining of mouse erythrocytes for flow cytometric analysis

DESCRIPTION	SIZE	CAT. NO.	
Mouse µicroFlow ^{PLUS} Kit	60 Tests	552730	
Rat µicroFlow ^{PLUS} Kit	60 Tests	552731	
Mouse µicroFlow ^{BASIC} Kit	60 Tests	552728	
Rat µicroFlow ^{BASIC} Kit	60 Tests	552729	

Unless otherwise specified, all products are for Research Use Only. Not for use in diagnostic or therapeutic procedures. Not for resale. All applications are either tested in-house or reported in the literature. See Technical Data Sheets for details.

Immunotoxicology

Immunotoxicology studies adverse health effects resulting from xenobiotic (drug/chemical that is not native to the mammalian system) interactions with the immune system.¹⁻²

There are five major areas of immunotoxicology as defined by the US FDA guidelines: immunosuppression, immunogenicity, hypersensitivity, autoimmunity, and adverse immunostimulation. Chemistry values and histopathology results routinely provide the first evidence that a drug has an immunological effect.³ If initial studies identify signs of immunosuppression, it is recommended that additional tests be conducted to determine the potential mechanism. Cell phenotyping and enumeration is an easy and powerful tool to quickly identify changes in specific leukocyte levels. A summary of markers used to identify different cell types by flow cytometry is shown in the table below.

Non Human Drimate

References

- 1. Toxicologic Pathology, 2002. 30(1): p. 54-58.
- 2. Toxicology Letters, 1998. 102-103: p. 267-270.
- 3. Toxicology, 1994. 86(3): p. 187-212.

Immunotoxicology. Cell Phenotype Markers

Rat		DO	Dog		Non-Human Primate	
SPECIFICTY	CLONE	SPECIFICTY	CLONE	SPECIFICTY	CLONE	
CD3	1F4	Pan T	LSM8.358	CD3	SP34.2	
CD4	OX-38, OX-35	CD4	LSM12.125	CD4	M-T477	
CD8a	OX-8	CD8	LSM1.140	CD8	RPA-T8	
CD45RA	0X-33	Pan B	LSM11.425	CD20	2H7	
NKR-P1A	10/78	NK cell marker	DL10*	CD56	MY31	
CD11b	WT.5	CD11b	CA16.3E10*	CD14	M5E2	
Granulocytes	HIS48	CD11b	CA16.3E10*	CD11b	ICRF44	
CD25	OX-39	Activation marker	CTL 2.58	CD25	M-A251	
CD80	3H5	Activation marker	CTL 2.58	CD86	2331(FUN-1)	
CD29	Ha2/5	CD49d	CA.4.5B6*	CD29	MAR4	
CD62L	HRL1	CD54	CL18.1D8*	CD62L	SK11	
	SPECIFICTY CD3 CD4 CD8a CD45RA NKR-P1A CD11b Granulocytes CD25 CD80 CD29	SPECIFICTY CLONE CD3 1F4 CD4 0X-38, 0X-35 CD8a 0X-8 CD45RA 0X-33 NKR-P1A 10/78 CD11b WT.5 Granulocytes HIS48 CD25 0X-39 CD80 3H5 CD29 Ha2/5	SPECIFICTYCLONESPECIFICTYCD31F4Pan TCD4OX-38, OX-35CD4CD8aOX-8CD8CD4SRAOX-33Pan BNKR-P1A10/78NK cell markerCD11bWT.5CD11bGranulocytesHIS48CD11bCD25OX-39Activation markerCD29Ha2/5CD49d	SPECIFICTY CLONE SPECIFICTY CLONE CD3 1F4 Pan T LSM8.358 CD4 0X-38, 0X-35 CD4 LSM12.125 CD8a 0X-8 CD8 LSM1.140 CD4SRA 0X-33 Pan B LSM11.425 NKR-P1A 10/78 NK cell marker DL10* CD11b WT.5 CD11b CA16.3E10* Granulocytes HI548 CD11b CA16.3E10* CD25 0X-39 Activation marker CTL 2.58 CD29 Ha2/5 CD49d CA4.5B6*	SPECIFICTYCLONESPECIFICTYCLONESPECIFICTYCD31F4Pan TLSM8.358CD3CD40X-38, 0X-35CD4LSM12.125CD4CD8a0X-8CD8LSM11.40CD8CD4SRA0X-33Pan BLSM11.425CD20NKR-P1A10/78NK cell markerDL10*CD56CD11bWT.5CD11bCA16.3E10*CD14GranulocytesHIS48CD11bCA16.3E10*CD15CD803H5Activation markerCTL 2.58CD86CD29Ha2/5CD49dCA.4.5B6*CD29	

* Not available from BD Biosciences

Rat and Canine C-Reactive Protein ELISA Kits

BD Biosciences – Pharmingen now offers ELISA kits to quantitatively measure C-reactive protein levels in rat (rCRP) and canine (cCRP). Each kit contains an ELISA standard (serum with elevated levels of CRP), a capture antibody-coated 96-well plate matched with an HRP-conjugated affinity purified detection antibody, substrate/TMB chromogen, and wash buffer. A standard curve can be constructed for accurately measuring the level of CRP in rat or canine serum, plasma, or other fluids and tissues in a total assay time of 30-90 minutes. These test kits can serve as part of a serum protein and cytokine/chemokine analysis panel in many research applications.

Contents:

DESC Rat Cani

- Plate-based assay, 96 wells with 12 break-away strips
- Cost-effective and user-friendly
- High specificity no cross-reactivity between species
- Break-away wells allow low-volume testing
- One year stability and reproducibility of results
- Easy-to-follow instructions

New BD[™] ELISA Kits

• Color-coded reagents in convenient, easy-to-use vials

RAT CRP Standard Curve

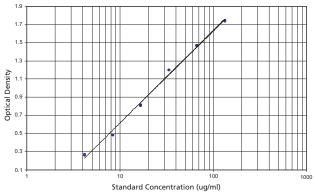
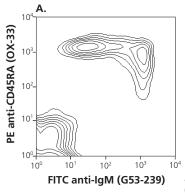
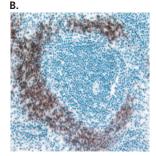


Figure 44. Standard Curve used in the measurement of rat CRP in serum


CRIPTION	ASSAY RANGE	SIZE	CAT. NO.
t CRP*	4.2 - 133.3 μg/ml	1 Plate	557825
nine CRP*	1.3 - 40.0 μg/ml	1 Plate	557826


*Original equipment manufacturer (OEM) from Helica Biosystems, Inc.

Unless otherwise specified, all products are for Research Use Only. Not for use in diagnostic or therapeutic procedures. Not for resale. All applications are either tested in-house or reported in the literature. See Technical Data Sheets for details.

Toxicology

B lymphocytes

anti-Marginal Zone B Cell marker (HIS57) on paraffin-embedded spleen

Figure 45. Flow cytometric analysis of rat splenocytes using PE anti-CD45RA (OX-33) and FITC anti-IgM (G53-239) (A) and immunohistochemical staining of rat spleen with anti-marginal zone B cell marker (H1557) (B).

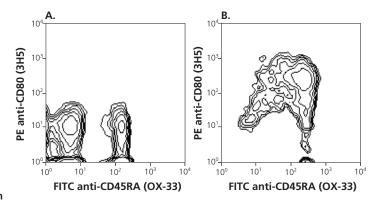


Figure 46. Activation-induced changes in the level of expression of the CD80 antigen on fresh rat splenocytes (A) and cells treated in vitro for 72 hours with lipopolysaccharide (LPS) (B). Cells were stained simultaneously with FITC anti-CD45RA (OX-33) and PE anti-CD80 (3H5).

T lymphocytes

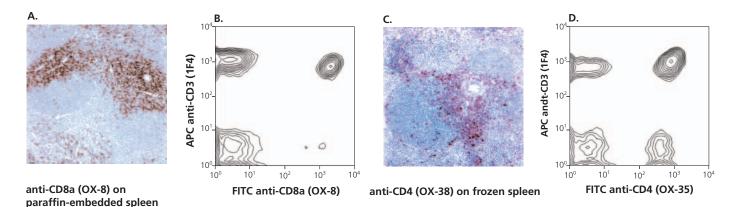
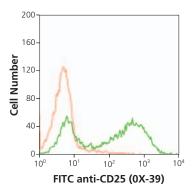



Figure 47. Immunohistochemical staining of rat tissue with anti-CD8a (A) or anti-CD4 (C) and flow cytometric analysis of rat peripheral blood cells stained with the APC anti-CD3 (1F4) and FITC anti-CD8a (OX-8) (B) or FITC anti-CD4 (OX-35) (D).

Figure 48. Expression of CD25 (IL-2Rα chain) on rat spleen T cells (CD3⁺) following in vitro incubation for 48 hours with medium alone (red line) or activation for 48 hours with Concanavalin A (green line).

Unless otherwise specified, all products are for Research Use Only. Not for use in diagnostic or therapeutic procedures. Not for resale. All applications are either tested in-house or reported in the literature. See Technical Data Sheets for details.

Cellular Imaging

BD[™] Pathway Live Cell Confocal Bioimager (New)

- Proven high-throughput assays for numerous applications including cytotoxicity, apoptosis, translocation, and cell cycle studies
- Fully automated sample processing
- Robust, integrated software with add-in modules for specific applications

The BD[™] Pathway Bioimager provides real-time confocal kinetic imaging in an easy-to-use compact unit.

Integrated System

The BD[™] Pathway Bioimager enables cell-based assays of multiple events within living cells, revealing significantly more information about cellular mechanisms and structure. With the ability to image multiple fluorescent dyes in living cells, one can pursue experiments that were previously not possible. The BD Pathway Bioimager can be operated in a fully automated mode using imaging software that seamlessly integrates imaging, liquid handling, plate navigation, and image analysis.

Rapidly Develop Cell-based Assays

The software included with the BD Pathway Bioimager employs a novel hierarchical data classification algorithm that allows greater flexibility in assay design and implementation. It allows you to configure and analyze many different cell-based assays including translocation, ion kinetics, apoptosis, cyctotoxicity, cell proliferation, and cell cycle experiments. Other specific applications such as neurite outgrowth are available separately as add-ins.

To find out how the BD™ Pathway Bioimager can accelerate your research, visit www.bdbiosciences.com/pathway.

Figure 49. The BDTM Pathway is a compact, fully automated confocal imaging platform with integrated liquid handling, temperature, and CO_2 regulation.

Features

- True confocal real-time imaging
- Full-spectrum laser-free illumination
- · Auto focus, auto-cell identification, and tracking
- · Confocal and wide field viewing modes
- Integrated temperature and CO₂ control
- Capable of imaging both cells and tissues
- Binocular eyepiece for direct sample viewing
- Kinetic or endpoint measurement assays
- Multiple plate and slide configurations including 96-well, 384-well, chamber slides, and microscope slides
- Versatile liquid handling and mixing
- Motorized high-resolution X, Y, Z
- Proprietary motionless stage with mobile optics

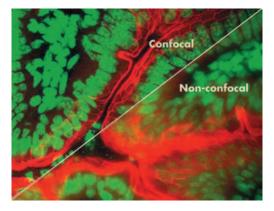


Figure 50. The BD™ Pathway Bioimager employs a unique laser-free confocal device that improves resolution and allows three-dimensional imaging.

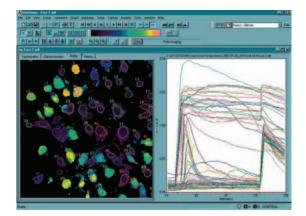


Figure 51. The BD™ Pathway software integrates a novel data classification capability to provide researchers flexibility in designing and implementing cell- based assays. After imaging at high resolution, cells are automatically identified and fluorescence intensity is monitored at the cellular or subcellular level. Using selective criteria, each cell can be automatically classified during the experimental run using a number of cell-specific features (eg, fluorescence intensity, rate of change, redistribution, etc.). Once classified, cells can be counted and traces color-coded. Additionally, wells can be color-coded based on criteria selected by the user, enabling whole plate maps to be identified by particular responses of interest. The software also incorporates sophisticated 3D rendering capabilities allowing the system to be used as an automated confocal imaging workstation.

BD Flow Cytometry Instrumentation

BD FACSArray[™] Bioanalyzer

The BD FACSArray[™] bioanalyzer provides researchers with a new and compelling platform capable of analyzing cellular and BD[™] Cytometric Bead Array assays. Supported by over 1,000 BD Biosciences products, the bioanalyzer is designed for multiparameter analysis of proteins in immunology and cell biology applications. The system is compact, easy-to-use, and particularly well-suited for BD Cytometric Bead Array (CBA) applications. Sampling speed is optimized by combining a new plate loader technology for sample input and digital electronics for acquisition rates of up to 15,000 events per second. An entire 96-well plate can be turned around in less than 35 minutes, while saving 1000 events per sample well. Each event contains information for up to six parameters. Featuring a dual-laser system, the bioanalyzer allows the use of several extremely bright fluorophores in parallel, thus enabling applications with a wide dynamic range. The BD FACSArray bioanalyzer offers a powerful, yet easy-to-use solution for many avenues of life sciences research. More information can be found online at www.bdbiosciences.com/bdfacsarray.

DESCRIPTION		CAT. NO.
BD FACSArray bioanalyzer*		inquire
(see page 44)	Fast microtiter plate sampler	
	• Six-parameter detection (Two scatter and four fluorescences)	
	Intuitive software	
	• Digital signal processing with up to 15,000 events per second	
	Compact, affordable benchtop unit	
BD FACSCalibur flow cytometry system*		inquire
	• The industry standard in dual-laser, six-parameter, four-color flow cytometric analysis	
	Includes BD CellQuest Pro Software	
	• BD FACSCalibur and BD CellQuest Pro are for In Vitro Diagnostic Use when used with IVD cleared assays	
BD FACSCanto benchtop flow cytometry sy	stem*	inquire
	Dual-laser instrument with true 6-color capability	
	• Powerful digital software to make multicolor experimentation fast and simple.	
	Resolves the dimmest events by increased sensitivity	
BD LSR II flow cytometry system*		Inquire
	• Incorporating digital electronics for use with up to four fixed-alignment lasers (488 nm, 638 nm, 405 nm, and UV)	
	Detect 18 colors through a revolutionary new optical design	
	Flexible and modular for future upgrades	
BD FACSAria cell sorting system*		inquire
	• First benchtop high-speed sorter with fixed-alignment cuvette flow cell	
	Cuvette flow cell for superior fluorescence sensitivity	
	• Up to three air-cooled lasers at 488-nm, 633-nm, and 407-nm wavelengths	
	• Digital acquisition rates of up to 70,000 events/second	
	Multicolor analysis of up to 15 parameters	
	• Two- and four-way bulk sorting devices for a variety of tube sizes	
	Optional BD Automated Cell Deposition Unit (ACDU) for sorting to BD Multiwell plates or microscope slides	

*Class 1 (I) Laser Product

RNA Detection

BD RiboQuant[™] Multi-probe RNAse protection assay

The BD RiboQuant[™] Multi-Probe RNAse protection assay (RPA) can be used to measure mRNA levels of molecules participating in apoptosis, during development, homeostasis, and in many disease conditions. RPA is a method for detecting and quantifying the expression of multiple genes in a single RNA sample. This assay system involves the hybridization of the RNA of interest to their complementary antisense RNA probes. Each individual apoptosis, cell cycle, tumor suppressor, and stress protein gene specific template has been assembled into relevant sets to be used by investigators for the T7 RNA polymerase-directed synthesis of a high-specific activity, $[\alpha^{-32}P]$ - labeled or biotin labeled, anti-sence RNA probe set. In each set, we have included the L32 gene (which codes a ribosomal gene) and the GAPDH gene (glyceraldehyde 3-phosphate dehydrogenase enzyme involved in glycolysis) to serve as housekeeping gene controls. Following transcription using the BD RiboQuant In vitro transcription kit, radioactive (Cat. No. 556850) and non-radioactive (Cat. No. 551917), the probe and total target RNA are solution-hybridized overnight using the reagents included in the RPA kit (Cat. No. 556134). Subsequently, free probe and single stranded non-protected RNA molecules are digested with a pre-optimized mixture of RNAse A and T1. The remaining RNAse-protected probes are treated with Proteinase K, extracted, precipitated, washed, and loaded into a 5% denaturing polyacrylamide gel. The resulting resolved bands are separated on the gel according to their size, and imaged by autoradiography, beta-scanning, or phospor-imaging systems for radiolabeled probes. Non-radioactive probes resolved on denaturing polyacrylamide gels are then transferred to a positively-charged nylon membrane. The membrane is probed with Streptavidin-HRP and enchased chemiluminescent substrate provided in BD Riboquant Non-rad detection kit (Cat. No. 551918). For non-radioactive detection, the membrane is exposed to x-ray film, and the level of each mRNA species in the original RNA sample is determined based on the intensity of the appropriately-sized, protected probe fragment.

For detailed and complete protocol visit www.bdbiosciences.com/pdfs/manuals/01-81014-20A.pdf

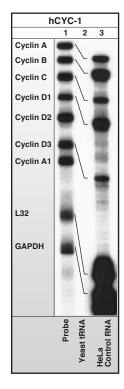


Figure 52. Samples of total RNA from various sources were analyzed for distinct mRNA species by using BD RiboQuant™ Multi-Probe Ribonuclease Protection Assay System with the hCYC-1 Multi-Probe Template Set. The autoradiogram from this analysis shows the hCYC-1 probe set not treated with RNases (Lane 1). Also shown are the corresponding RNaseprotected probes following hybridization with yeast tRNA (2 µg, Lane 2) and RNA from HeLa cells (5 µg, Lane 3). Note that each probe band (Lane 1) migrates slower than its protected band (Lane 3); this is due to flanking sequences in the probe that are not protected by mRNA.

Unless otherwise specified, all products are for Research Use Only. Not for use in diagnostic or therapeutic procedures. Not for resale All applications are either tested in-house or reported in the literature. See Technical Data Sheets for details

BD RiboQuant[™] Multi-Probe Ribonuclease Protection Assay (RPA) System

DESCRIPTION	APPS	SIZE	CAT. NO.
BD RiboQuant RPA Starter Package	RPA	1 Kit	556144
contains:			
In Vitro Transcription Kit		1 Kit	556850
RPA Kit		1 Kit	556134
Choice of one BD RiboQuant Template Set		10 transcriptions	
BD RiboQuant Non-Rad RPA Starter Package	RPA	1 Kit	551919
contains:			
BD RiboQuant Non-Rad In Vitro Transcription Kit		1 Kit	551917
RPA Kit		1 Kit	556134
BD RiboQuant Non-Rad Detection Kit		1 Kit	551918
Choice of one BD RiboQuant Template Set		10 transcriptions	
BD RiboQuant In Vitro Transcription Kit	RPA	25 transcriptions	556850
contains:			
Ammonium Acetate		1.3 ml	556133
DTT		50 µl	556126
EDTA		650 µl	556132
GTP/ATP/CTP/UTP Pool		25 µl	556125
RNase-Free DNase		50 µl	556130
RNAsin®*		25 µl	556128
T7 RNA Polymerase		25 µl	556129
Transcription Buffer		100 µl	556127
Yeast tRNA		50 µl	556131
BD RiboQuant Non-Rad In Vitro Transcription Kit	RPA	1 Kit	551917
contains:			
5x Nucleotide Mix		16.5 µl	
5x Transcription Buffer		20 µl	
DTT		10 µl	
Enzyme Mix (RNasin & T7 RNA Polymerase)		10 µl	
RNase-free DNase I		10 µl	
EDTA		135 µl	
Glycogen		5 µl	
LiCl		2.7 ml	
RPA Kit	RPA	200 RPA reactions	556134
contains:			
Ammonium Acetate		24 ml	556141
Hybridization Buffer		3.6 ml	556135
Loading Buffer		1.3 ml	556142
Proteinase K		300 µl	556139
Proteinase K Buffer		3.9 ml	556138
RNase A + T1 Mix		60 µl	556137
RNase Buffer		25 ml	556136
Yeast tRNA		300 µl	556140
L			

RNA Detection

BD RiboQuant[™] Multi-Probe Ribonuclease Protection Assay (RPA) System (continued)

DESCRIPTION	APPS	SIZE	CAT. NO.
BD RiboQuant Non-Rad Detection Kit	RPA	1 Kit	551918
contains:			
Nylon Membrane		10 Membranes	
Membrane Blocking Buffer		500 ml	
Wash Buffer (4x)		500 ml	
Substrate Equilibration Buffer		500 ml	
Streptavidin-Horseradish Peroxidase		1.5 ml	
Stable Peroxide Buffer		75 ml	
Luminol / Enhancer		75 ml	

RNA Isolation

DESCRIPTION	APPS	SIZE	CAT. NO.
Total RNA Isolation Kit	RPA	1 Kit	556224

Human Apoptosis

Template Set	hAPO-1b	hAPO-1c	hAPO-2b	hAPO-2c	hAPO-3	hAPO-3b
Catalog Number	556209	556233	556240	556235	556163	556237
Templates	Caspase-8	Caspase-8	bcl-w	bcl-w	Caspase-8	Caspase-8
	Granzyme B	Caspase-4	bcl-x (L)	bcl-x (L)	FasL	FasL
	Caspase-3	Caspase-3	bcl-x (S)	bcl-x (S)	Fas	Fas
	Caspase-6	Caspase-6	bfl-1	bfl-1	FADD	CLARP
	Caspase-5	Caspase-10a	BID	bad	DR3	FAP
	Caspase-2 (S)	Caspase-5	bik	bik	FAP	CRADD
	Caspase-7	Caspase-2 (S)	bak	bak	FAF	DAXX
	Caspase-1	Caspase-7	bax	bax	TRAIL	MADD
	Caspase-2 (L)	Caspase-1	bcl-2	bcl-2	TNFRp55	RIP
	Caspase-9	Caspase-2 (L)	mcl-1	mcl-1	TRADD	L32
	L32	Caspase-9	L32	L32	RIP	GAPDH
	GAPDH	L32	GAPDH	GAPDH	L32	
		GAPDH			GAPDH	

emplate Set	hAPO-3d	hAPO-4	hAPO-5	hAPO-5b	hAPO-5c	hAPO-6	
atalog Number	557278	556164	556165	556236	556239	556238	
emplates	Caspase-8	Granzyme A	XIAP	TRAF1	XIAP	IPL	
	FasL	Granzyme B	TRAF1	TRAF2	Survivin	ASK1	
	Fas	DAD1	TRAF2	TRAF4	NAIP	Harakiri	
	DcR-1	FAST K	TRAF4	I-TRAF	c-IAP-2	SIAH	
	DR3	Granzyme H	NAIP	TRAF5	c-IAP-1	DFF	
	DR5	RVP1	c-IAP-2	TRAF6	TRPM-2	Nip2	
	DR4	Dr-nm23	c-IAP-1	TRAF3	L32	Nip3	
	TRAIL	Granzyme 3	TRPM-2	TRIP	GAPDH	Nip1	
	DcR-2	Requiem	TRAF3	L32		DAP-K	
	TNFRp55	CAS	L32	GAPDH		DAP	
	TRADD	Perforin	GAPDH			DRM	
	RIP	L32				L32	
	L32	GAPDH				GAPDH	
	GAPDH						

Mouse and Rat Apoptosis

Template Set	mAPO-1	mAPO-2	mAPO-3	rAPO-1
Catalog Number	556195	556191	556192	556227
Templates	Caspase-8	bcl-w	Caspase-8	Fas
	Caspase-3	bfl1	FasL	bcl-x (L)
	Caspase-6	bcl-x(L)	Fas	bcl-x (S)
	Caspase-11	bcl-x(S)	FADD	FasL
	Caspase-12	bak	FAP	Caspase-1
	Caspase-2 (L)	bax	FAF	Caspase-3
	Caspase-7	bcl2	TRAIL	Caspase-2
	Caspase-1	bad	TNFRp55	bax
	Caspase-14	L32	TRADD	bcl-2
	Caspase-2 (S)	GAPDH	RIP	L32
	L32		L32	GAPDH
	GAPDH		GAPDH	

Human Cell Cycle Regulators

Template Set	hCC-1	hCC-2	hCYC-1	hCYC-2	hStress-1	hTS-1
Catalog Number	556159	556160	556189	556190	556188	556161
Femplates	Cdk1	p130	Cyclin A	Cyclin E	bcl-x	p130
	Cdk2	Rb	Cyclin B	Cyclin F	p53	Rb
	Cdk3	p107	Cyclin C	Cyclin G1	GADD45	p107
	Cdk4	p53	Cyclin D1	Cyclin G2	c-fos	DP1
	p27	p57	Cyclin D2	Cyclin I	p21	DP2
	p21	p27	Cyclin D3	Cyclin H	bax	E2F1
	PISSLRE	p21	Cyclin A1	L32	bcl-2	E2F2
	p16	p19	L32	GAPDH	mcl-1	E2F4
	L32	p18	GAPDH		L32	L32
	GAPDH	p16			GAPDH	GAPDH
		p14/15				
		L32				
		GAPDH				

Mouse Cell Cycle Regulators

Template Set	mCC-1	mCYC-1	mCYC-2
Catalog Number	559540	556241	556242
Templates	cdk1	Cyclin A2	Cyclin E
	cdk2	Cyclin B1	Cyclin F
	cdk4	Cyclin C	Cyclin G1
	cdk5	Cyclin D1	Cyclin G2
	cdk7	Cyclin D2	Cyclin I
	cdk8	Cyclin D3	Cyclin H
	KKIALRE	Cyclin A1	L32
	PCTAIRE3	Cyclin B2	GAPDH
	PCTAIRE1	L32	
	PITAIRE/CHED	GAPDH	
	PITALRE		
	PITSLRE		
	L32		
	GAPDH		

RNA Detection

Human DNA Repair Pathways

Template Set	hBER-1a*	hBER-2*	hDisR-1*	hDSBR-1*	hDSBR-2*	hMMR*	hNER-1*	hNER-2*	hNER-3*
Catalog Number	Custom	Custom	Custom	Custom	Custom	Custom	Custom	Custom	Custom
Femplates	SMUG1	POLE	APC	LIM15	ATM	PMS1	XPG	hCSB	POLE
	OGG1	PARP	RB1	RAD50	NBS1	PMS2	DDB1	hXPB	RFCp140
	TDG	ΡΟΙδ	BLM	RAD54	XRCC4	MSH2	XPC	hTFIIHp52	ΡΟΙδ
	APEX	LIG3	WRN	RAD52	LIG4	MSH3	XPF	hTFIIHp44	LIG1
	UNG	LIG1	FANCC	MRE11	XRCC2	MSH6	RPAp70	hCSA	RFCp40
	MPG	XRCC1	FANCA	XRCC2	XRCC3	MSH5	DDB2	hcdk7	RFCp38
	NTHL1	POLβ	BRCA1	XRCC3	XRCC9	MYH	HHR23B	hCyclinH	RFCp37
	RPA4	FEN1	BRCA2	RAD51	Ku86 (XRCC5)	MLH1	XPA	hTFIIHp34	RFCp36
	MGMT	PCNA	WT1	RAD51B	DNA-PK (XRCC7)	L32	RPAp32	ERcc1	PCNA
	MBD4	L32	L32	RAD51C	Ku70 (XRCC6)	GAPDH	RPAp14	XPD	L32
	L32	GAPDH	GAPDH	RAD51D	L32		L32	L32	GAPDH
	GAPDH			L32	GAPDH		GAPDH	GAPDH	
				GAPDH					

*Only available as a Custom Template Set. Please contact our Technical Services Team at 877.232.8995 option 2.1 or email techserv@bd.com for more information.

Mouse and Rat DNA Repair Pathways

Template Set	mBER-1*	mBER-2*	rBER-1*
Catalog Number	Custom	Custom	Custom
Templates	OGG1	PARP	OGG1
	TDG	ΡΟΙδ	PARP
	APEX	LIG3	APE
	UNG	LIG1	ΡΟΙδ
	MPG	XRCC1	MPG
	NTHL1	FEN1	ΡΟLβ
	MGMT	ΡΟLβ	MGMT
	L32	PCNA	PCNA
	GAPDH	L32	L32
		GAPDH	GAPDH

*Only available as a Custom Template Set. Please contact our Technical Services Team at 877.232.8995 option 2.1 or email techserv@bd.com for more information.

Human Toxicology

Template Set	hTox-1b	hTox-2	hTox-3	hTox-4
Catalog Number	550793	550794	552134	552135
Templates	CYP2B6	FMO1	UGT1A1	GSTM3
	NCPR	FMO2	UGT1A7	GSTM2
	CYP2C8	FMO3	UGT1A10	GSTM1
	CYP1A2	FMO4	UGT1A9	GSTM4
	CYP2A6	FMO5	UGT1A6	GSTM5
	CYP2C9	SULT2A1	UGT1A8	GSTA4
	CYP2C19	SULT2B1	UGT1A4	GSTA2
	CYP3A4	SULT1C1	UGT2B4	GSTA3
	CYP2D6	SULT1A	UGT2B15	L32
	L32	L32	UGT2B7	GAPDH
	GAPDH	GAPDH	L32	
			GAPD	

<u>Notes</u>

Regional Offices

Asia Pacific BD Singapore Tel 65.6861.0633 Fax 65.6860.1593

Local Offices and Distributors

Argentina/Paraguay/Uruguay Tel 54.11.4551.7100 x106 Fax 54.11.4551.7400

Austria

SCIENTIFIC SUPPORT Tel 43.1.706.36.60.44 Fax 43.1.706.36.60.45 BBSupport_GSA@europe.bd.com Customer Service Tel 43.1.706.36.60 Fax 43.1.706.36.60.11 bd_austria@europe.bd.com

Belgium

CUSTOMER SERVICE Tel 32.53.720.550 Fax 32.53.720.549 customer_service_bdbelgium@europe.bd.com

Brazil

Tel 55.11.5185.9995 Fax 55.11.5185.9895 biosciences@bd.com.br

Central America/Caribbean Tel 506.290.7318 Fax 506.290.7331

Chile Tel 56.2 460.0380 x16 Fax 56.2 460.0306

China Tel 8610.6418.1608 Fax 8610.6418.1610

Colombia Tel 57.1.572.4060 x244 Fax 57.1.572.3650

Denmark Tel 45.43.43.45.66 Fax 45.43.43.41.66 bdbnordic@europe.bd.com

BD Biosciences

10975 Torreyana Road San Diego, CA 92121-1106 *Toll free* 877.232.8995 www.bdbiosciences.com

East Africa Tel 254.2.341157 Fax 254.2.341161 bd@africaonline.co.ke

Eastern Europe Tel 49.6221.305.161 Fax 49.6221.305.418 bdb.ema@europe.bd.com

Australia/New Zealand

Fax 61.2.8875.7200

bd_anz@bd.com

New Zealand Tel 64.9.574.2468

Fax 64.9.574.2469

bd anz@bd.com

Australia Tel 61.2.8875.7000

Egypt Tel 202.268.0181 Fax 202.266.7562

 Finland

 Tel
 358.9.88.70.7832

 Fax
 358.9.88.70.7817

 bdbnordic@europe.bd.com

 France

 Tel
 33.4.76.68.36.40

 Fax
 33.4.76.68.35.06

 SCENTIFIC SUPPORT
 Tel

 Tel
 33.4.76.68.35.71

 bdb, france scientific support@europe.bd.com
 Customer Service

 Tel
 33.4.76.68.37.32

 Fax
 33.4.76.68.35.06

 customer service.bdb.france@europe.bd.com
 Customerservice.bdb.france@europe.bd.com

Germany SCIENTIFIC SUPPORT Tel 49.6221.305.525 Fax 49.6221.305.530 BDSBupport GSA@europe.bd.com CUSTOMER SERVICE Tel 49.6221.305.551 Fax 49.6221.303.609 customerservice.bdb.de@europe.bd.com

Greece Tel 30.210.940.77.41 Fax 30.210.940.77.40 **Canada BD Biosciences** Toll free 888.259.0187 Tel 905.542.8028 Fax 888.229.9918 canada@bd.com

Europe Belgium Tel 32.53.720.211 Fax 32.53.720.450 contact_bdb@europe.bd.com

Hong Kong Tel 852.2575.8668 Fax 852.2803.5320

Hungary Szerena Tel 36.1.345.7090 Fax 36.1.345.7093

India Tel 91.124.238.3566.77 Fax 91.124.238.3225

Indonesia Tel 62.21.577.1920 Fax 62.21.577.1925

Italy Tel 39.02.48.240.1 Fax 39.02.48.20.33.36

Japan Fujisawa Pharmaceutical Co., Ltd. (Reagents from Immunocytometry Systems & Pharmingen) Tel 81.6.6206.7890 Fax 81.6.6206.7934

Korea Tel 822.3404.3700 Fax 822.557.4048

Malaysia Tel 603.7725.5517 Fax 603.7725.4772

Mexico Tel 52.55.5999.8296 Fax 52.55.5999.8288

Middle East Tel 971.4.337.95.25 Fax 971.4.337.95.51 bdb.ema@europe.bd.com Japan Nippon Becton Dickinson Toll free 0120.8555.90 Tel 81.24.593.5405 Fax 81.24.593.5761 Clontech Products Tel 81.3.5324.9609 Fax 81.3.5324.9637

The Netherlands

CUSTOMER SERVICE Tel 31.20.582.94.20

Fax 31.20.582.94.21

Tel 33.4.76.68.35.03

Fax 33.4.76.68.35.44

Tel 47.23.05.19.30

Fax 47.22.63.07.31

Tel 51.1.430.0323 Fax 51.1.430.1077

Tel 632.807.6073

Fax 632 850 1998

Peru/Bolivia/Ecuador

North Africa

Norway Laborel S/A

Philippines

Poland

customer_service_bdholland@europe.bd.com

bdbiosciences maghreb@europe.bd.com

United States BD Biosciences Customer/Technical Service Toll free 877.232.8995 Clontech Fax 800.424.1350 Discovery Labware Fax 978.901.7493 Immunocytometry Systems Fax 408.554.2347 Pharmingen Fax 858.812.8888 www.bdbiosciences.com

Sweden Tel 46.8.775.51.10 Fax 46.8.775.51.11 bdbnordic@europe.bd.com

Substrain Support Tel 41.61.485.22.91 Fax 41.61.485.22.92 BDBsupport_GSA@europe.bd.com Customers Service Tel 41.61.485.22.22 Fax 41.61.485.22.00 customerservice.bdb.ch@europe.bd.com

Taiwan Tel 8862.2722.5660 Fax 8862.2725.1768

Thailand Tel 662.643.1374 Fax 662.643.1381

Turkey Tel 90.212.222.87.77 Fax 90.212.222.87.76

 United Kingdom & Ireland

 Tel
 44.1865.78.16.88

 Fax
 44.1865.78.16.27

 bduk_customerservice@europe.bd.com

Venezuela Tel 58.212.241.3412 x248 Fax 58.212.241.7389

West Africa Sobidis Tel 225.20.33.40.32 Fax 225.20.33.40.28

> PRESORTED STANDARD US POSTAGE PAID SAN LEANDRO, CA PERMIT NO 169

BD Biosciences

Clontech Discovery Labware Immunocytometry Systems Pharmingen

Tel 48.22.651.75.88 Fax 48.22.651.75.89 bdb.ema@europe.bd.com Portugal

Enzifarma Tel 351.21.421.93.30 Fax 351.21.421.93.39

Saudi Arabia Tel 966.1.26.00.805/806 Fax 966.1.26.00.804

South Africa Tel 27.11.807.15 31 Fax 27.11.807.19 53 bdb.ema@europe.bd.com