I Ine.

VOL N O WINTER 2001

from BD Biosciences

IN THIS ISSUE:

- **1 NEW** PE-Cy-7 and APC-Cy7 Tandem Conjugates for Flow Cytometry
- 4 Identifying Antigen-Specific CD8+ **T-Cell Responses**
- 8 Standardization of Human Th1/Th2 Cytometric Bead Array
- 9 Active Caspase-3 CBA Kit
- 10 NEW Custom Products & Services From the Custom Technology Team
- 12 Identification of Primitive **Progenitor Cells**
- 14 Developing B Lymphocytes in the Mouse
- 18 NEW Reagents for Mouse T-Cell Costimulation Research
- 22 IHC in Neuroscience Research
- 25 Human Leukocyte Differentiation Antigen Poster Now Available
- 26 NEW BD RioboQuant[™] Non-Rad RPA
- 28 NEW Products from BD Biosciences
- 36 Where We'll Be in Winter 2001/02

NEW PE-Cy7 and APC-Cy7 Tandem Conjugates for Flow Cytometric Analysis

By Kerstin Willmann, Tom Frey, Joe Link, Barny Abrams, and Ken Davis

Increase Productivity and Expand Flexibility

Get more information out of a single tube than ever before with the NEW PE-Cy7* and APC-Cy7* tandem conjugates. Perform up to six-color analysis using FITC, PE*, PerCP* or PerCP-Cy5.5*, PE-Cy7, APC*, and APC-Cy7. The fifth and sixth fluorescence parameters add more flexibility to your experimental design in immunophenotyping, immune function studies, and cell sorting flow cytometry applications.

BD Biosciences

Clontech **Discovery Labware** Immunocytometry Systems Pharmingen

Continued on page 2

NEW PE-Cy7 and APC-Cy7 Tandem Conjugates (continued from cover)

Optimal Compensation and Bright Signals

Cy7 emits in the far-red region of the spectrum (767 nm) and is distinctly separated from other typically used fluorochromes in flow cytometry (Figure 1). For comparison, the spectral emission peak of PE is 565 nm, for PerCP 677 nm, PerCP-Cy5.5 695 nm, and for APC 660 nm. The chemistry of the new tandem conjugates is optimized for low compensation between the tandem conjugates and other fluorochromes (Figure 2).

Instrumentation

PE-Cy7 is excited at 488 nm using a blue laser and can be run on single-laser instruments with the appropriate emission optics. APC-Cy7 is excited using a red laser such as a dye laser, a HeNe laser, or a Krypton laser. Instruments accommodating these needs are the FACS VantageTM, FACSVantage SE (standard analog or FACSDiVa), and the NEW custom LSR instrument, which will be available in Spring 2002. Instrument setup is performed manually or samples can be run uncompensated followed by digital compensation using the FACSDiVa Option (Figure 3) or FlowJo software.

Superior Quality

Our reagents are manufactured and tested to high standards of purity, stability, low background, and lot-to-lot consistency. All fluorescent conjugates are optimized and ready for use in flow cytometry.

Ordering Information for Anti-Human Products

Additional BD Biosciences Immunocytometry Systems antibodies can be conjugated to PE-Cy7 and APC-Cy7 through our custom conjugate program. Please contact your local BD Biosciences representative for more details.

Product Description		RUO ^a Cat. No.	ASR ^b Cat. No.	
CD4 PE-Cy7	Coming soon!	348789	348799	
CD5 PE-Cy7	Coming soon!	348790	348800	
CD34 PE-Cy7	Coming soon!	348791	348801	
Mouse IgG ₁ PE-Cy7	Coming soon!	348788	348798	
CD8 APC-Cy7	Coming soon!	348793	348803	
CD19 APC-Cy7	Coming soon!	348794	348804	
CD45 APC-Cy7	Coming soon!	348795	348805	
Mouse IgG, APC-Cy7	Coming soon!	348792	348802	

^a For Research Use Only. Not for use in diagnostic or therapeutic procedures.

^b Analyte Specific Reagent. Analytical and performance characteristics are not established. Available in the US only.

Ordering information for Anti-Mouse Products

Product Description	Cat. No.
B220 APC-Cy7	0112FA
CD4 (GK1.5) APC-Cy7	552051

* Patent—PE and APC: US 4,520,110; 4,859,582; 5,055,556; Europe 76,695; Canada 1,179,942 PerCP: US 4,876,190 Cy: US 5,268,486; 5,486,616; 5,569,587; 5,569,766; 5,627,027 PE-Cy7: US 4,542,104 APC-Cy7: US 5,714,386

Figure 3. Six-color fluorophore combination: CD3 FITC/CD16+56 PE/CD45 PerCP-Cy5.5/CD4 PE-Cy7/CD19 APC/CD8 APC-Cy7: Data were acquired and analyzed on a FACSVantage SE with the FACSDiVa Option digital electronics. All parameters are displayed on a five-decade scale using the area measurement. For more details on the FACSDiVa Option, please contact your local BD Biosciences representative.

Identifying Antigen-Specific CD8⁺ T-Cell Responses

By Smita Ghanekar, Kerstin Willmann, and Holden T. Maecker

CD8⁺ T cells are the primary effector cells of acquired cellular immunity. They possess cytolytic activity against virally infected cells (or in some cases tumor cells) and can elaborate anti-viral cytokines¹. In HIV disease, a powerful demonstration of the importance of CD8⁺ T cells was made in a macaque model of SIV². Depletion of CD8⁺ T cells from macaques completely abolished their ability to be protected from disease. Evidence for the importance of CD8⁺ T cells in HIV also has come from studies of

HIV– exposed, but uninfected, individuals who share strong CTL activity against particular epitopes of HIV³⁻⁵. These studies have raised interest in detecting and monitoring antigen-specific CD8⁺ T cells in HIV and cancer.

CD8⁺ T cells recognize peptide antigens bound to class I MHC molecules on host antigen-presenting cells. In order to detect CD8⁺ T-cell cytokine responses to complex antigens, it is neces-

sary to present the relevant peptide epitopes of these antigens on host class I MHC molecules. Fortunately, this is easily accomplished by exogenous addition of peptides to whole blood or PBMCs⁶. In fact, a large number of peptides can be added as a mixture to a single tube or well. Studies by Kern and colleagues⁷ have demonstrated the utility of using a mixture of overlapping 15 amino acid peptides to detect CD8⁺ T-cell responses to an entire protein. We, and others, have adapted this approach to a variety of protein antigens from CMV and HIV^{8,9}. An advantage of using 15 amino acid peptides is that they are able to stimulate CD4⁺ T cells, while still stimulating CD8⁺ T cells with

relative efficiency⁹. Using multiparameter cytokine flow cytometry (CFC), CD4⁺ and CD8⁺ functional responses can be easily resolved in a single assay.

Other methods for detecting antigen-specific CD8⁺ T cells include phenotypic analysis using recombinant, multivalent MHC-peptide complexes. The two most common constructs of this type are MHC-peptide tetramers¹⁰ and MHC-Ig dimers¹¹ (DimerX reagents, BD Biosciences Pharmingen). These structures can be loaded with a specific recombinant peptide of choice and added to whole blood or PBMCs. Antigen-specific T cells can be detected by flow cytometry after MHC-peptide complexes bind to a specific T-cell subset. Both dimer and tetramer technologies enable interrogation of T cells of just one MHCpeptide specificity at a time. The response to a complex antigen such as HIV involves T-cell clonotypes specific for a number of different MHC-peptide combinations that are

> different in each individual^{8,12}. It is important to note that dimer and tetramer technologies used in isolation do not provide a direct readout of a cell's functional capacity. These drawbacks are overcome by the use of functional assays, such as CFC or ELISPOT, that detect cytokine production by antigen-specific T cells and are suggested to correlate with cytotoxic activity¹³. By combining functional assays with tetramer or dimer analysis,

functionally anergic cells of a particular specificity can be identified¹⁴⁻¹⁶. Anergic cells could contribute to the lack of immune responsiveness in chronic diseases like cancer. The dimer or tetramer approach is easily combined with functional CFC, since both techniques can be applied to the same sample and analyzed by flow cytometry. In contrast, ELISPOT technology uses an optical plate reader for sample analysis and is restricted to one- or two-parameter detection. Therefore, subsetting of functional and nonfunctional T-cell populations is easiest to address with CFC.

Product Highlight

BD Biosciences Immunocytometry Systems has developed a step-by-step, highly reproducible methodology for performing CFC assays. Our FastImmune[™] protocols are

Figure 2. Detection of CMV– and HIV–specific CD8⁺ T-cell responses using mixtures of overlapping 15 amino acid peptides spanning the CMV pp65 or HIV p55 glycoproteins: All plots are gated on CD3⁺CD8⁺ cells. For methods, see reference 9.

based on the use of individual antibody reagents, multicolor reagent products, or cytokine detection kits that include all reagents for sample preparation, thus providing assay standardization.

The NEW FastImmune CD8 Intracellular Cytokine Detection Kit directly identifies antigen-activated CD8+ T-cell IFN-γ responses. The kit is developed for use with human whole blood or PBMCs. It includes a specific antibody combination, matching isotype control, and necessary sample processing reagents for optimal and highly reproducible results. The FastImmune methodology is compatible with the requirements of vaccine monitoring in clinical trials¹⁷. For example, whole blood samples can be activated and automatically cooled at the end of the six-hour activation period by means of a programmable water bath or similar device. Also, samples activated and fixed with FACSTM Lysing Solution* can be frozen at -80°C for shipment to a different site where processing and analysis are done in a batch process. Maecker et al found that cytokine responses to peptide antigens can be efficiently obtained with fresh and cryopreserved

samples⁹. Streamlined procedures for analysis of CD8⁺ T-cell responses in clinical trials have the potential to accelerate the identification of surrogate immunological endpoints in diseases such as HIV and cancer¹⁸. 5

An overview of the CFC assay using whole blood is shown in Figure 1. Whole blood is subjected to antigenic stimulus in the presence of a secretion inhibitor, Brefeldin A (BFA). This leads to intracellular accumulation of newly synthesized protein. After a stimulation period of six hours, the leucocytes are fixed and erythrocytes lysed, simultaneously. The cells are then washed and permeabilized. Finally, intracellular, as well as surface, antigens are stained in the same protocol step with Anti-Hu IFN-y FITC, CD69 PE, CD8 PerCP-Cy5.5, and CD3 APC, followed by flow cytometric analysis. The FastImmune CD8 Kit includes CD3 APC to avoid misidentification of NK cell responses (CD8dim) upon antigenic stimulus. CD8⁺ T cells are identified as CD3⁺CD8⁺ events, and their functional responses are measured as cells positive for both CD69 PE and Anti-IFN-γ FITC. The use of CD69, an early activation marker, provides more confidence in

Identifying Antigen-Specific CD8⁺ T-Cell Responses (continued from page 5)

Table 1. Typical CD8⁺ T-cell response ranges for various stimuli in healthy donors (estimated by BD Biosciences Research and Development group).

Stimulus	Typical %CD3+CD8+CD69+IFN-γ+cells
PMA+ionomycin	70–90
Staphylococcal enterotoxin B (SEB)	1–15
Specific antigen (eg, CMV pp65 peptide mix)	0.2–5

identifying cytokine-positive cells as having been recently activated, either *in vivo*, or as a result of the *in vitro* stimulation. CD69 staining also permits better visual clustering of cytokine-positive cells in a CD69 vs Anti-IFN– γ dot plot. This can aid in the identification of rare populations of antigen-specific cells. A typical example of CD8⁺ T-cell responses using a peptide-mix antigen is shown in Figure 2.

In intracellular staining procedures, the requirements for optimal staining intensity are very stringent. BD Biosciences has selected monoclonal antibody clones and optimized conjugation chemistry to achieve bright signals and minimal background. Table 1 provides a general reference of typical ranges of cytokine responses observed using various stimuli. While individual results may vary, antigen-specific CFC assays demand the use of reagents and techniques that provide very low background in order to detect responses of this magnitude.

References

- Slifka MK, Whitton JL. Antigen-specific regulation of T cellmediated cytokine production. Immunity. 2000;12:451.
- Schmitz JE, Kuroda MJ, Santra S, et al. Control of viremia in simian immunodeficiency virus infection by CD8⁺ lymphocytes. Science. 1999; 283:857.
- Kaul R, Plummer FA, Kimani J, et al. HIV⁻¹-specific mucosal CD8⁺ lymphocyte responses in the cervix of HIV⁻¹-resistant prostitutes in Nairobi. J Immunol. 2000;164:1602.
- Kaul R, Dong T, Plummer FA, et al. CD8⁺ lymphocytes respond to different HIV epitopes in seronegative and infected subjects. J Clin Invest. 2001;107:1303.
- Kaul R, Rowland-Jones SL, Kimani J, et al. Late seroconversion in HIV-resistant Nairobi prostitutes despite pre-existing HIV-specific CD8+ responses. J Clin Invest. 2001;107:341.
- Kern F, Surel IP, Brock C, et al. T-cell epitope mapping by flow cytometry. Nat Med. 1998; 4:975.

- Kern F, Faulhaber N, Frommel C, et al. Analysis of CD8 T cell reactivity to cytomegalovirus using protein-spanning pools of overlapping pentadecapeptides. Eur J Immunol. 2000; 30:1676.
- Betts MR, Casazza JP, Patterson BA, et al. Putative immunodominant human immunodeficiency virus-specific CD8⁺ T-cell responses cannot be predicted by major histocompatibility complex class I haplotype. J Virol. 2000; 74:9144.
- Maecker HT, Dunn HS, Suni MA, et al. Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J Immunol Methods. 2001; 255:27.
- 10. Altman JD, Moss PAH, Goulder PJR, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996; 274:94.
- Greten TF, Slansky JE, Kubota R, et al. Direct visualization of antigen-specific T cells: HTLV-1 Tax11-19–specific CD8⁺ T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc Natl Acad Sci USA. 1998; 95:7568.
- Bitmansour AD, Waldrop SL, Pitcher CJ, et al. Clonotypic structure of the human CD4⁺ memory T cell response to cytomegalovirus. J Immunol. 2001;167:1151.
- Ghanekar SA, Nomura LE, Suni MA, Picker LJ, Maecker HT, Maino VC. Gamma interferon expression in CD8⁺ T cells is a marker for circulating cytotoxic T lymphocytes that recognize an HLA A2-restricted epitope of human cytomegalovirus phosphoprotein pp65. Clin Diagn Lab Immunol. 2001; 8:628.
- Zajac AJ, Blattman JN, Murali-Krishna K, et al. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998;188:2205.
- Lee PP, Yee C, Savage PA, et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med. 1999; 5:677.
- He XS, Rehermann B, Boisvert J, et al. Direct functional analysis of epitope-specific CD8⁺ T cells in peripheral blood. Viral Immunol. 2001; 14:59.
- Nomura LE, Walker JM, Maecker HT. Optimization of whole blood antigen-specific cytokine assays for CD4⁺ T cells. Cytometry. 2000;40:60.
- Maecker HT, Maino VC, Picker LJ. Immunofluorescence analysis of T-cell responses in health and disease. J Clin Immunol. 2000;20:391.

NEW Specific Antigen-Activation Intracellular Cytokine Detection Kits

FastImmune Cytokine Detection Kits make getting started easier with a simplified protocol, optimized reagents, and an open system for the activation antigen of your choice. Each kit provides sufficient reagents to stain 25 stimulated (specific and isotype control tube) and 25 unstimulated (specific and isotype control tube) human whole blood samples.

Kits contains:

FastImmune Anti-Hu IFN-γ FITC/CD69 PE*/CD8 PerCP-Cy5.5*/CD3 APC* Or FastImmune Anti-Hu Cytokine FITC/CD69 PE/CD4 PerCP-Cy5.5 FastImmune matching multicolor isotype control FastImmune Brefeldin A FastImmune EDTA Solution FastImmune CD28/CD49d Costimulatory Reagent FACS Lysing Solution FACS Permeabilizing Solution 2

Cat. No.		Product Description†	
346049	NEW	FastImmune CD8 Anti-Hu IFN- γ Detection Kit	Coming soon
340970		FastImmune CD4 Anti-Hu IFN-γ Detection Kit	
340971		FastImmune CD4 Anti-Hu IL-2 Detection Kit	
340972		FastImmune CD4 Anti-Hu TNF- α Detection Kit	

NEW Specific Multicolor Cytokine Reagents

FastImmune three- and four-color cytokine reagents can be used alone or in conjunction with the Intracellular Cytokine Detection Kit for additional cytokine measurements. These reagents have already been optimized to work together, so you don't have to perform tedious titrations or additional pipeting steps during your assay. CD4 and CD8 are conjugated to PerCP-Cy5.5 for better separation of CD4dim and CD8 dim T cells from the negative cell population.

Cat. No.		Product Description†	
346048	NEW	FastImmune Anti-Hu IFN-γ FITC/CD69 PE/CD8 PerCP-Cy5.5/CD3 APC	Coming soon
346047	NEW	FastImmune IgG _{2a} FITC/IgG ₁ PE /CD8 PerCP-Cy5.5/CD3 APC	Coming soon
340962		FastImmune Anti-Hu IFN-γ FITC/CD69 PE/CD4 PerCP-Cy5.5	
340963		FastImmune Anti-Hu IL-2 FITC/CD69 PE/CD4 PerCP-Cy5.5	
340964		FastImmune Anti-Hu TNF- α FITC/CD69 PE/CD4 PerCP-Cy5.5	
340965		FastImmune IgG _{2a} FITC/IgG ₁ PE/CD4 PerCP-Cy5.5	

For Research Use Only. Not for use in diagnostic or therapeutic procedures. Not for resale.

- Patents—PE and APC: US 4,520,110; 4,859,582; 5,055,556; Europe 76,695; Canada 1,179,942
 PerCP: US 4,876,190 Cy5.5: US 5,268,486; 5,486,616; 5,569,587; 5,569,766; 5,627,027
 FACS Lysing Solution: US 4,654,312; 4,902,613; 5,098,849
- [†] Use of these products to measure activation antigens expressed on mononuclear cell subsets for purpose of monitoring immunoregulatory status can fall under one or more claims of the following patents: US 5,445,939; 5,656,446; 5,843,689; Europe 319,543; Canada 1,296,622; Australia 615,880; and Japan 2,769,156.

Standardization of the Human Th1/Th2 Cytometric Bead Array (CBA) Cytokine Standards to International Standards

By Homero Sepulveda, Ph.D., Heather Baumhover, Diane Mochizuki, Ph.D., Jerry Wilson, and David Ernst, Ph.D.

Laboratories throughout the world use different bioassays and immunoassays to measure and report cytokine protein levels that are present in biological samples. For this reason, the availability of international standard preparations of cytokine proteins is essential to allow definitive analyses and comparison of results¹. These primary (aka, gold) standards are frequently used to calibrate biological activities and protein concentrations between different secondary assay standards used by investigators. The gold standards provide a means to determine relative concentrations of unknown samples and an ability to compare results between experiments and laboratories. In order to support the comparison of cytokine protein measurements obtained using the Human Th1/Th2 Cytokine CBA Kits (Table 2), we evaluated the assay performance of the standards provided in the CBA Kit with gold standards from the National Institute for Biological Standards and Control (NIBSC).

The NIBSC Human Cytokine Protein Standards are recognized by the World Health Organization (WHO) as International Biological Standards. They meet established requirements for accuracy, consistency and stability². The NIBSC/WHO standards are assigned potency values in International Units (IU) of biological activity and nominal mass (*i.e.*, not absolute mass values) for purposes of bioassay and immunoassay determinations¹. These International Standards are not intended to be used as samples of purified material. Consequently, they cannot be used to establish absolute concentrations or specific activities for cytokine preparations. Rather, the standards provide a means to facilitate comparisons of cytokine concentration values determined by experiments conducted within the same or different laboratories. Herein, we compared the performance and expected concentration of the International Cytokine Standards relative to our Human Th1/Th2 CBA Cytokine Standards. The resulting data, together with the conversion factors between the CBA standards and the International Standards (i.e., nominal mass values) are summarized in Table 1. As shown in Figure 1, the performance of both sets of standards was found to be similar as measured by observed parallelism of the dose response slope. This observed parallelism provided confidence that comparisons of the concentrations of the two standards (and subsequent quantitation of native biological samples) are valid. It is important to note that the standard's source (i.e., insect cell, E. coli, etc.) can greatly effect the measurement and performance of a protein in a given antibody-based immunoassay. The conversion factors for the NIBSC/WHO standards make it possible to determine the equivalency of cytokine protein concentrations present in samples measured by different immunoassays that have been standardized to the same NIBSC/WHO standards.

References:

- Thorpe, R.C., A.R. Mire-Sluis, and M. Wadhwa. 2001. Cytokine Standardization. In Cytokine Reference Volume 1:Ligands.
 Oppenheim, J.J., M. Feldmann, S.K. Durum, T. Hirano, J. Vilcek, and N. A. Nicola, eds. Academic Press, San Diego, CA, pp. 83 - 91.
- 2. Biological Reference Materials 2000. National Institute for Biological Standards and Control.

	Human IL-2	Human IL-4	Human IL-5	Human IL-6	Human IL-10	Human TNF-α	Human IFN-γ	
NIBSC Code Number	86/504	88/656	90/586	89/548	93/722	87/650	87/586	
I.U.	100 I.U.	1000 I.U.	5000 I.U.	100,000 I.U.	5000 I.U.	40,000 I.U.	250 I.U.	
Mass units per vial	7.6 ng	100 ng	500 ng	1000 ng	1000 ng	1000 ng	12.5 ng	
Nominal NIBSC concentration (pg/ml)	5000	5000	5000	5000	5000	5000	5000	
Calculated concentration using CBA (pg/ml)	3296 ± 635	4465 ± 479	7811 ± 639	5813 ± 755	4443 ± 671	6568 ± 327	10848 ± 599	
CBA:NIBSC/WHO Mass Conversion Factor	1.52	1.12	0.64	0.86	1.13	0.76	0.46	

Table 1. Conversion Factors Between the BD CBA Human Th1/Th2 Cytokine Standards and the NIBSC Standards.

Table 1. The relationships of the CBA and NIBSC cytokine standards were determined in a parallel titration study. In each case, the NIBSC standard was titrated (starting at 5000 pg/ml) based on its reported nominal mass/vial and tested with the CBA standards using the CBA assay. The calculated concentrations (mean \pm SEM; n = 3) for the NIBSC standards were used to determine conversion factors for standardizing sample concentrations determined with the CBA standards.

Table 2. BD CBA Products available from BD Biosciences Pharmingen

Cat. No.	Description	Analytes	Format	Size
552124	Human Active Caspase-3 CBA Kit	Active Caspase-3	Kit	100 tests
550749	Human Th1/Th2 Cytokine CBA Kit	IL-2, IL-4, IL-5, IL-10, TNF-α, IFN-γ	Kit	50 tests
551809	Human Th1/Th2 Cytokine CBA Kit - II	IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ	Kit	50 tests
551811	Human Inflammation CBA Kit	IL-8, IL-1β, IL-6, IL-10, TNF-α, IL-12p70	Kit	50 tests
551810	Human Th1/Th2 Cytokine Standards	IL-2, IL-4, IL-5, IL-6, IL-10, TNF-α, IFN-γ	lyophilized	1 vial
please inquire	Human Anaphylatoxin CBA Kit	C3a, C4a, C5a	Kit	50 tests
551287	Mouse Th1/Th2 Cytokine CBA Kit	IL-2, IL-4, IL-5, TNF-α, IFN-γ	Kit	50 tests
550026	Mouse Immunoglobulin Isotyping CBA Kit	Heavy and light chain isotypes of mouse IgG1,	Kit	100 tests
		lgG2a, lgG2b, lgG3, lgA, lgM, lgE		
550065	BD CBA Software	Mac and PC Compatible CD-Rom and User's guide	CD	1 CD

Announcing the newest addition to the BD Cytometric Bead Array (CBA) Product Portfolio -Human Active Caspase-3 CBA Kit

BD Biosciences is pleased to announce the release of the Human Active Caspase-3 CBA Kit. The Human Active Caspase-3 CBA Kit is a single bead assay for the rapid quantitative measurement of active caspase-3 protein from small volume cell lysate samples. The assay is capable of measuring active caspase-3 protein over a two-log dynamic range using a simple 4-hour assay protocol, providing a significant improvement over conventional western blot assays. Please contact BD Biosciences Pharmingen Technical Services for more details.

Catalog Number 552124

To see more of this image and read about the "Multiplex Bead System You Can Count On," please see the end of this issue.

News Update from the BD Biosciences Custom Products & Services Group

By Nicole Johnson, Jay Dong, and Tony Ward

10

With the integration of several businesses across BD Biosciences, we have created a single custom products and services group (or CPSG for short) to better serve you, our valued customer. This group combines the Custom products and services from the Custom Technology Team (BD Biosciences Pharmingen), molecular products and services (BD Biosciences Clontech), ADME/Tox and custom plasticware (BD Biosciences Discovery Labware) and custom flow cytometry related instrumentation (BD Biosciences Immunocytometry Systems). Together, we offer an unparalleled range of custom products and services to streamline and optimize your work. Listed below are some of our latest offerings.

Custom Products

Custom products are a convenient solution to answer your unmet needs.

Multicolor flow cytometric cocktails with new tandem conjugates

Explore multicolor flow cytometry with 4- and 5-color antibody cocktails utilizing new dyes such as PerCP-Cy5.5 and PE-Cy7.

Cytokine Flow Cytometry Products

Measure antigen-specific immune response in whole blood activated with your antigen or peptide pools. Detect both Th1 and Th2 cytokines intracellularly along with surface cell markers. These products are available for both Human and Non-Human Primate studies.

Cytometric Bead Array (CBA) testing service

Multiplex detection of multiple analytes in small serum and plasma samples (choose from Th1/Th2 and inflammatory cytokines, and apoptosis markers).

Cell proliferation with BrdU by flow cytometry

Proliferation assays using antibodies tracking incorporation of BrdU in combination with cell surface markers. Unlike bulk 3H-thymidine incorporation assays, these assays let you know exactly which cells are proliferating in response to your antigen.

Made to order Multiple Tissue Arrays (MTA)

Need to verify or localize your genes and proteins? You provide the tissues, specify the punch size and any other parameters, and we will make your MTA for you. We can also help you pre-screen or validate your data for your particular gene or protein using our on-site pathologist.

Custom Services

In general, if we offer a technology as a custom product, we also can provide a contract service too. In addition, we offer the following dedicated services:

ELISPOT testing services

Measure frequency of cytokine-producing cells. Assays are optimized for detecting Th1 (IL-2, IFN- γ , TNF- α) and Th2 (IL-4, IL-5) cytokine secretion by T cells.

BD PowerBlotTM Western Array Screening Service

Using our panel of over 800 antibodies covering a wide range of cell signalling proteins, we screen your control and experimental samples for changes in the levels of protein expression. This increasingly popular service can help you justify grants with a minimum of experimentation.

PCR/RT-PCR Quantitation

Measure specific genes of interest by PCR before and after a treatment or just monitor over time. We offer Real Time Quantitative PCR based assays such as T cell receptor excision circle (TREC) analysis for monitoring recombination activity in recent thymic emigrants and more. 11

Custom Baculovirus Services

Check out our second generation BD Baculogold[™] DNA and comprehensive Baculovirus expression system. Our second generation systems lets us obtain up to 5 logs of recombinant virus produced over background, which typically translates to higher yields for you. We offer a flexible approach to a full service program from gene cloning to large-scale amplification and all stages of protein expression, production and purification.

In short, whether you need custom arrays or libraries, clinical trial monitoring, research reagents made to your specifications, custom coated plastics or even custom instruments, BD Biosciences has the skill and infrastructure to help you get where you need to go.

Identification of a Primitive Progenitor Cell Subset Using Hoechst 33342

By Dennis T. Sasaki, B.Sc., MA

Introduction

12

Characterization of hematopoietic stem cells and their subsets has traditionally been performed with cell surface staining using fluorescently labelled monoclonal antibodies. A cell marker of choice is CD34¹, a transmembrane phosphoglycoprotein that is selectively expressed on vascular endothelial cells, tissue fibroblasts or stromal cells, and hematopoietic cells. CD34 has been used in different combinations with other cell surface markers and is the most prevalent marker currently used for identification of mouse and human progenitor cells. The cells identified by these methods have biological properties that include self renewal and differentiation into mature cell lineages^{2,3}.

Fluorescent probes such as rhodamine 123 ^{4,5} and pyronin Y⁶ have been shown to fractionate subpopulations of hematopoietic progenitor cells when used with other cell surface markers. Goodell^{7,8,9} and co-workers have described a method using dual wavelength flow cytometry to define a small (0.01-0.10%) population of primitive progenitor cells that selectively efflux the dye Hoechst

set that includes the following filters: DM610 SP, BP450/20, and EF675 LP.

33342 (bis-benzimide) in mouse, primate, and human bone marrow as well as in a variety of tissues. This population of cells is termed "side population" (SP) cells. These cells are enumerated by exciting the Hoechst labelled cells with the 350 nm line of a UV laser and then simultaneously measuring the fluorescence using blue and far red emission filters. Of particular interest is that these cells express CD34-low to negative and are thought to be the most primative of progentitor cells identified to date.

Method

The SP hematopoietic stem cells are identified by the cell's ability to differentially efflux the Hoechst dye via a multidrug-like transport mechanism. This is a dynamic process, therefore care must be exercised during the labeling protocol by judiciously observing the time and temperature requirements¹⁰.

The BD Biosciences Stem Cell Side-Population Filter Set, (Cat. No. 341063), provides operators of the BD FACStarPlus[™], BD FACSVantage[™], BD FACSVantage[™] SE (with or without the FACSDiVa option) with a convenient way to set up flow cytometers equipped with an ultraviolet laser in the second or third positions to perform these experiments. The DM610 SP used to distinguish the red from the blue fluorescence signals comes premounted on a mirror holder that is attached to the instrument's dichroic mirror holder. The BP450/20 nm and EF675-LP filters are then installed in front of the PMT detectors as shown in Figure 1. The BP450/20 nm is used to discriminate the fluorescent blue signal and the EF675-LP the red signal. The events are collected using linear amplification (Figure 2).

For best results:

- 1. UV laser should be tuned to 350 nm and 100 mW for defining this rare sub-population of cells.
- 2. Data should be displayed as correlated Hoechst blue and Hoechst red in linear mode.
- 3. Cytometer should be aligned to minimize the cv's in all of the fluorescence channels for this application.
- 4. The sample should be kept at 4°C throughout the analysis or sort to minimize dye efflux.
- Sorted S-P cells should be collected at 4°C in a small volume of DMEM containing 10% FBS and 10 mM HEPES (use a 1.5 ml Eppendorf centrifuge tube).
- 6. Maintain a low sample differential for maximum resolution.
- 7. Collect a large list mode data file of 100,000 events for the analysis.
- 8. Gate out the dead cells using propidium iodide (PI).

The phenomenon of 'red fluorescence' from Hoechst 33342 is not fully understood. It is postulated that the way in which the dye binds to the chromatin conformation has a direct effect on the emission spectra¹¹.

BD FACSVantage SE

13

Figure 2. Murine C57BL/6 bone marrow was stained using Hoechst 33342. A data set of 100,000 events was collected in list mode. The contour plot at 5% probability of ungated events show the S-P population (R1) with frequencies that range from 0.02 to 0.08%.

References:

- Civin, C., Straus, L.C., Brovall, C., Fackler, M.J., Schwartz, J.F., and Shaper, J.H., J. Immunol. 133, 157 (1984).
- Baum, C.M., Weissman, I.L., Tsukamoto, A., Buckle, A., Peault, B., Proc. Natl. Acad. Sci. USA 89:2804 (1992).
- 3. Spangrude, G.J., Heimfeld, S., and Weissman, I., Science 241, 58-62 (1988).
- Srour, E.F., Leemhuis, T., Brandt, J.E., van Beisen, K., and Hoffman, R., Cytometry 12:179 (1991).
- Uchida, N., Combs, J., Chen, S., Zanjani, E., Hoffman, R., Tsukamoto, A., Blood 88(4):1297 (1996).
- Ladd, A.C., Pyatt, R., Gothot, A., Rice, S., McMahel, J., Traycoff, C.M., and Srour, E., Blood 90(2):658 (1997).
- Goodell, M.A., Rosenzweig, M., Kim, H., Marks, D.F., DeMaria, M., Paradis, G., Grupp, S.A., Sieff, C.A., Mulligan, R.C., and Johnson, R.P., Nat, Med. 3(12): 1337 (1997).
- 8. Storms, R.W., Goodell, M.A., Fisher, A., Mulligan, R.C., and Smith, C., Blood 96(6):2125 (2000).
- Wulf, G.G., Wang, R., Kuehnle, I., Weider, D., Marini, F., Brenner, M., Andreef, M., and Goodell, M.A., Blood 98(4):1166 (2001).
- 10. Protocol from: www.bcm.tmc.edu/genetherapy/goodell
- 11. Watson, J.V., Hakeff, A., Chambers, S.H., and Smith, P.J., Cytometry 6:310 (1985).

Developing B lymphocytes in the Mouse

By Michelle Krakowski, Andrea Nguyen, and Belen Ybarrondo

14

Mouse B lymphocytes are generated from pluripotent hematopoietic stem cells found in the liver before birth and in the bone marrow afterward. Much effort has been made to understand the stepwise and highly regulated process of B cell development, or B lymphopoiesis. Of course, this process is extremely complex, and the survival of developing B cells is tightly linked to requirements for various growth factors and the appropriate temporal expression of signaling molecules promoting differentiation, proliferation and viability. The expression or loss of specific molecules found either on the cell surface or in the cytoplasm, has been used as a key to interpret the differentiation stage of a given developing B cell. Various independent but correlated nomenclatures have been created to define the steps from stem cell to mature B cell, and we have attempted to represent a unified model (Figure 1). This discussion will focus on the B cells originating from the bone marrow. For a more detailed description of liver-derived B

cells and B1 cells, please see references 3, 4, and 7.

Very early B lymphocyte progenitors are found within a pool of CD117/c-kit⁺ CD127/IL-7Rα⁺ common progenitor cells that have the capacity to develop along not only B but also T and NK lineages. Among an ever-increasing list of transcription factors (TFs) involved in B cell development, E2A and EBF clearly initiate B cell-specific gene expression, including activation of Pax5, which then acts as the critical factor determining commitment to the B cell lineage^{11,2,13}. This earliest committed developing B cell (a pre-pro-B cell) expresses low levels of the recombination activating gene products RAG1 and RAG2 as well as TdT (terminal deoxynucleotidyl transferase) otherwise known as the "rearrangement machinery". Thus these cells have not yet initiated immunoglobulin (Ig) gene rearrangement.

The next goal is to produce a functional mature B cell with a non-autoreactive immunoglobulin⁹. Pro-B/pre-B I cells are phenotypically defined as CD45R/B220⁺ CD19^{+/-} CD117/c–kit⁺ CD43⁺ CD25⁻ IgM⁻ IgD⁻, but the critical aspect that sets these cells apart is the initiation of D_H (diversity) to J_H (joining) segment rearrangement.

The transition to the pre-B/pre-B II cell requires V_H (variable) segment rearrangement with the previously made DJ_H . The randomness of segment recombination is critical for the great diversity of the Ig repertoire, but it also creates an extremely large number of out-of-frame, non-coding µH chains. Indeed, it is at this next stage of B cell development that the greatest numbers of apoptotic cells are found⁵ as well as the greatest sensitivity to the growth and proliferation factor IL-7¹⁵.

B lymphocyte development to the large pre-B/large pre-B II cell is critically dependent upon the ability of the newly made μ H chain to associate with the surrogate light (SL) chain. This surrogate for conventional light chain is composed of the VpreB and λ 5 proteins and is absolutely required for proper folding and membrane transport of Igµ during lymphopoiesis. Only those µH chains that pair with a SL chain to

form the pre-B cell receptor (pre-BCR) along with the signaling proteins Ig α (CD79a) and Ig β (CD79b) are allowed to continue developing¹⁰. The monoclonal antibody (mAb) SL156 may be used for the identification of such an appropriately complexed pre-BCR (Figure 2), as it specifically binds a conformational epitope of SL/µH complex on a subpopulation of pre-B/pre-B II cells¹⁶. The fully assembled pre-BCR triggers a proliferative expansion in these large pre-B/large pre-B II cells. Current studies have not yet determined whether surface expression of the pre-BCR, or some as yet unknown pre-BCR ligand crosslinking is required for this to occur. Also at this stage, expression of both the rearrangement machinery and SL chain are down-regulated, functionally inducing allelic exclusion for the heavy chain.

	Pro-B/Pre-B I		Pre-B II		B Cells		
	Pre-ProB	Pro-B		Pre-B		B Cells	
	Early	Inter.	Late	Large	Small	Immature	Mature
Fraction	A	B/	′C	C'	D	E	F
lgH rearrangement	Germline	D-J _H	D-J _H	V _H -DJ _H	V _L -J _L	V _L -J _L ?	V _L -J _L ?
RAG1/RAG2							
TdT							
CD45R (B220)							
V PreB/λ5							
Early B Lineage/pB130-140							
CD43							
CD24							
BP-1							
sIgM							
slgD							
CD23							
CD19							
CD40							
CD127 (IL-7Rα)							
CD79a / CD79b							
MHC Class II							
CD25 (IL-2Rα)							

Figure 1. Genetic and phenotypic characterization of B cell maturation in mouse bone marrow.

After a limited number of cell divisions, pre-B/pre-B II cells fall into a resting state and are characterized by their small size (small pre-B/small pre-B II). Rearrangement of the light chain gene segments (κ first, and λ when necessary) is initiated, and successful production of an IgL is tested. It is now the ability of the IgL chain to productively pair with the pre-existing μ H chain in cells to form a B cell receptor (BCR) that determines fitness. Additionally, cells with auto-reactive specificities are deleted or anergized unless they are able to further rearrange or "edit" their receptor.

An immature B cell is one able to express a non-autoreactive BCR molecule and is phenotypically characterized as CD45R/B220⁺ CD19⁺ CD43⁻ CD117/c–kit⁻ CD25⁻ IgM⁺ IgD⁻. Of the 2 x 10⁷ immature B cells produced by the bone marrow daily, approximately 10% reach the spleen, with even fewer making it into the re-circulating repertoire of mature B cells^{1,5}. The transition from a developing B to a mature B cell may be identified using a combination of monoclonal antibodies specific for CD45R (clone RA3-6B2) and pB130-140 (clone 493), as seen in Figure 3¹³. Loss of expression of pB130-140 correlates well with emerging IgM and IgD expression as expected. Even within the periphery, selective pressures on the fitness of the BCR may come into play within the germinal center and secondary Ig gene rearrangement. 15

A developing B cell is required to make a functional heavy chain, assemble pre-BCR, pair heavy and light chains and delete auto-reactivity; overall a rare event. The stepwise progression of precursors through B lymphopoiesis is a tightly regulated system dependent upon survival signals balanced with apoptosis. The next challenges are to further our understanding of both the molecular mechanisms controlling these processes as well as the ability of the system to respond to the selective pressures shaping the overall peripheral repertoire.

Developing B lymphocytes in the Mouse (continued from page 15)

	Specificity	Clones
	CD5	53-7.3
	CD16/32 (FcyR)	2.4G2
	CD19	1D3
	CD24 (HSA)	30-F1, J11D, M1/69
	CD25 (IL-2Rα)	PC61, 7D4, 3C7
	CD34	RAM34
	CD35 (CR1, CD21b)	8C12
	CD40	HM40-3, 3/23
	CD43 (Ly-48, Leukosialin)	S7
	CD45, CD45.1, CD45.2 (Leukocyte Common Antigen, Ly-5)	30-F11, A20, 104
	CD45R (B220)	RA3-6B2
	CD72 (Lyb-2.1)	10-1.D.2
	CD79a (Igα)	HM47
	CD79b (Igβ)	HM79b
	CD80 (B7-1)	1G10, 10-10A1
	CD81 (TAPA1)	Eat1
	CD86 (B7-2)	GL1, PO3
	CD95 (fas)	Jo2
	CD117 (c-kit)	2B8, ACK45
	CD127 (IL-7Rα)	B12-1
	CD135 (Ly-72, Flk-2/Flk-3)	A2F10.1
W	pB130-140	493
W	Early B lineage	AA4.1
	Flk-1 (VEGF-R2)	Avas 12a1
	lgD	11-26c.2a
	lgM	11/41, R6-60.2
W	λ5	LM34
	Ly-51 (BP-1 Antigen)	6C3
	OX40L	RM134L
	Rag-1	G189-1417, G109-25
	Rag-2	G176-142, G110-461
	TdT (Terminal deoxynucleotidyl transferase)	E17-1519
EW	VpreB	SL156

Figure 2. Pre-BCR is expressed on B cell lines resembling early stages of B cell development (70Z/3 a slg⁻ pre-B lymphoblast, Panel A), but not on those with a mature B cell phenotype (WEHI-231 a slgM⁺ B lymphocyte, Panel B). Cell lines were stained with the purified mAb SL156 (solid histogram) or isotype control rat $IgG_{2a} \kappa$ mAb R35-95 (open histogram), followed by biotinylated antirat IgG_{2a} mAb RG7/1.30 then Streptavidin-APC. Dead cells were initially removed from analysis by propidium iodide gating. Flow cytometry was performed on a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA).

Unpublished BD Biosciences Pharmingen data.

Figure 3. Transition from developing B cell to mature B cell. Bone marrow leukocytes from a 6 week old female BALB/c mouse were stained with APC-conjugated anti-mouse CD45R/B220 (RA3-6B2), PE-conjugated anti-mouse pB130-140 (493) and FITC-conjugated anti-mouse IgD (11-26c.2a). For analysis, gates were set to B220^{low} 493⁺ developing B cells or B220^{high}, 493⁻ mature B cells (Panel A). As expected, no IgD expression was found on the developing B cells (Panel B), but was present on the more mature B cells (Panel C). Dead cells were initially removed from analysis by propidium iodide gating. Flow cytometry was performed on a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA).

IgD - FITC

Unpublished BD Biosciences Pharmingen data.

References:

 Buhl, A., D. Nemazee, J. Cambier, R. Rickert and M. Hertz. (2000). "B-cell antigen receptor competence regulates B-lymphocyte selection and survival." Immunol Rev 176(141-53).

- Busslinger, M., S. Nutt and A. Rolink. (2000). "Lineage commitment in lymphopoiesis." Curr Opin Immunol 12(2): 151-8.
- 3. Hardy, R. and K. Hayakawa. (2001). "B cell development pathways." Annu Rev Immunol 19: 595-621.
- Herzenberg, L. (2000). "B-1 cells: the lineage question revisited." Immunol Rev 175: 9-22.
- Lu, L. and D. Osmond. (2000). "Apoptosis and its modulation during B lymphopoiesis in mouse bone marrow." Immunol Rev 175: 158-74.
- Martensson, I. and R. Ceredig. (2000). "Role of the surrogate light chain and the pre-B-cell receptor in mouse B-cell development." Immunology 101(4): 435-41.
- 7. Martin, F. and J. Kearney. (2000). "B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a "natural immune memory". Immunol Rev 175: 70-9.
- Meffre, E., R. Casellas and M. Nussenzweig. (2000). "Antibody regulation of B cell development." Nat Immunol 1(5): 379-85.
- Melchers, F., E. ten Boekel, T. Seidl, X. Kong, T. Yamagami, K. Onishi, T. Shimizu, A. Rolink and J. Andersson. (2000). "Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells." Immunol Rev 175: 33-46.
- Muljo, S. and M. Schlissel. (2000). "Pre-B and pre-T-cell receptors: conservation of strategies in regulating early lymphocyte development." Immunol Rev 175: 80-93.
- O'Riordan, M. and R. Grosschedl. (2000). "Transcriptional regulation of early B-lymphocyte differentiation." Immunol Rev 175: 94-103.
- Osmond, D., A. Rolink and F. Melchers. (1998). "Murine B lymphopoiesis: towards a unified model." Immunol Today 19(2): 65-68.
- Rolink, A., J. Andersson and F. Melchers. (1998). "Characterization of immature B cells by a novel monoclonal antibody, by turnover and by mitogen reactivity." Eur J Immunol 28(11): 3738-48.
- Rolink, A., C. Schaniel, J. Andersson and F. Melchers. (2001). "Selection events operating at various stages in B cell development." Curr Opin Immunol 13(2): 202-7.
- Stoddart, A., H. Fleming and C. Paige. (2000). "The role of the preBCR, the interleukin-7 receptor, and homotypic interactions during B-cell development." Immunol Rev 175: 47-58.
- Winkler, T., A. Rolink, F. Melchers and H. Karasuyama. (1995). "Precursor B cells of mouse bone marrow express two different complexes with the surrogate light chain on the surface." Eur J Immunol 25(2): 446-50.

NEW Reagents for the Study of Mouse T-Cell Costimulation

BD Pharmingen[™] Purified anti-mouse ICOS mAb 7E.17G9, Purifed and PE-conjugated anti-mouse PD-1 mAb J43, and NA/LE[™] Non-Cytolytic Mouse CTLA-4-IgG Fusion Protein are the latest additions to our line of research reagents for the expanding CD28 family of costimulatory receptors. The 7E.17G9 and J43 antibodies are useful for flow cytometric analysis of cell-surface expression of the ICOS and PD-1 antigens, respectively, on activated mouse leukocytes. The NA/LE[™] Non-Cytolytic Mouse CTLA-4-IgG Fusion Protein blocks binding of both CTLA-4 and CD28 to their ligands, B7-1 and B7-2. For more detailed information about these reagents, please refer to the Technical Documents in our *e*Catalog at **www.bdbiosciences.com**. The receptors of the CD28 family are cell-surface glycoproteins of the Ig superfamily which provide regulatory signals to either promote or inhibit T-Cell Receptor (TCR)-mediated activation of T lymphocytes. Their ligands, members of the B7 family, are expressed on antigen-presenting cells. Interactions of the CD28 and B7 families are involved in the regulation of T-cell activation and the establishment and maintenance of immunological tolerance.

References

Chambers C.A. The expanding world of co-stimulation: the twosignal model revisited. Trends in Immunology. 2001; 22:217-223.

Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunology. 2001; 2:261-268.

Table 1. Summary of the CD28 Family Members

Receptor (Synonym)	Ligand (Synonym)	Regulatory Activity	Receptor Expression on Mouse Leukocytes
CD28	CD80 (B7-1, BB1), CD86 (B7-2, B70)	Stimulation	Thymocytes; T, NK, and mast cells
CD152 (CTLA-4)	CD80 (B7-1, BB1), CD86 (B7-2, B70)	Inhibition	Activated T cells
ICOS	B7RP-1 (B7h, LICOS, B7-H2)	Stimulation	Activated T cells
PD-1	PD-L1 (B7-H1), PD-L2	Inhibition	Activated T, B, and myeloid cells

Table 2. BD Biosciences Reagents for T-Cell Costimulation Research

Cat. No.	Description	Clone Name	Format	Size
Reagents for	TCR-mediated activation of mouse T lymphocy	tes		
553057	anti-mouse CD3e (CD3 ϵ chain)	145-2C11	NA/LE	0.5 mg
557306	anti-mouse CD3e (CD3 ε chain)	145-2C11	Purified	0.1 mg
553058	anti-mouse CD3e (CD3 ϵ chain)	145-2C11	Purified	0.5 mg
553238	anti-mouse CD3e (CD3 ϵ chain)	500A2	Purified	0.5 mg
555273	anti-mouse CD3 molecular complex	17A2	Purified	0.5 mg
553180	anti-mouse γ δ TCR*	GL4	Purified	0.5 mg
553181	anti-mouse γ δ TCR*	UC7-13D5	NA/LE	0.5 mg
553182	anti-mouse γ δ TCR*	UC7-13D5	Purified	0.5 mg
553166	anti-mouse TCR β chain*	H57-597	NA/LE	0.5 mg
553167	anti-mouse TCR β chain*	H57-597	Purified	0.5 mg
354720	Mouse anti-CD3 T-Cell Activation Plates	145-2C11	NA/LE	5 plates

19

*Please see the BD Biosciences catalog or website for mAb to activate T cells bearing specific TCR V α , β , γ , or δ chains.

Reagents for the study of CD28 family receptors and B7 family ligands in the mouse

553294	anti-mouse CD28	37.51	NA/LE	0.5 mg
557393	anti-mouse CD28	37.51	Purified	0.1 mg
553295	anti-mouse CD28	37.51	Purified	0.5 mg
553296	anti-mouse CD28	37.51	Biotin	0.5 mg
553297	anti-mouse CD28	37.51	PE	0.2 mg
553367	anti-mouse CD80 (B7-1)	1G10	NA/LE	0.5 mg
553368	anti-mouse CD80 (B7-1)	1G10	Purified	0.5 mg
553765	anti-mouse CD80 (B7-1)	16-10A1	NA/LE	0.5 mg
553766	anti-mouse CD80 (B7-1)	16-10A1	Purified	0.5 mg
553767	anti-mouse CD80 (B7-1)	16-10A1	Biotin	0.5 mg
553768	anti-mouse CD80 (B7-1)	16-10A1	FITC	0.5 mg
553769	anti-mouse CD80 (B7-1)	16-10A1	PE	0.2 mg
553688	anti-mouse CD86 (B7-2)	GL1	NA/LE	0.5 mg
553689	anti-mouse CD86 (B7-2)	GL1	Purified	0.5 mg
553690	anti-mouse CD86 (B7-2)	GL1	Biotin	0.5 mg
553691	anti-mouse CD86 (B7-2)	GL1	FITC	0.5 mg
553692	anti-mouse CD86 (B7-2)	GL1	PE	0.2 mg
550542	anti-mouse CD86 (B7-2) for immunohistochemistry	GL1	Purified	1 ml
553838	anti-mouse CD86 (B7-2)	PO3	NA/LE	0.5 mg
558784	anti-mouse CD86 (B7-2)	PO3	Purified	0.1 mg
557426	anti-mouse CD86 (B7-2)	PO3	Biotin	0.1 mg
553718	anti-mouse CD152 (CTLA-4)	UC10-4F10-11	NA/LE	0.5 mg
553719	anti-mouse CD152 (CTLA-4)	UC10-4F10-11	Purified	0.5 mg
553720	anti-mouse CD152 (CTLA-4)	UC10-4F10-11	PE	0.1 mg
555278	anti-mouse CD152 (CTLA-4)	9H10	NA/LE	0.5 mg
555279	anti-mouse CD152 (CTLA-4)	9H10	Purified	0.5 mg
552015	anti-mouse ICOS	7E.17G9	Purified	0.5 mg
551891	anti-mouse PD-1	J43	Purified	0.1 mg
551892	anti-mouse PD-1	J43	PE	0.1 mg
552132	Mouse Non-cytolytic CTLA-4-IgG Fusion Protein		NA/LE	0.25 mg
552133	Mouse Non-cytolytic CTLA-4-IgG Fusion Protein		NA/LE	0.5 mg

NEW Reagents for Mouse T-Cell Costimulation (continued from page 19)

Table 2. BD Biosciences Reagents for T-Cell Costimulation Research (continued)

20

Cat. No.	Description	Clone Name	Format	Size
Reagents for	TCR-mediated activation of rat T lym	phocytes		
554829	anti-rat CD3	G4.18	NA/LE	0.5 mg
559974	anti-rat CD3	G4.18	Purified	0.1 mg
554830	anti-rat CD3	G4.18	Purified	0.5 mg
556970	anti-rat CD3	1F4	Purified	0.5 mg
554910	anti-rat $\alpha\beta$ TCR*	R73	NA/LE	0.5 mg
554911	anti-rat αβ TCR*	R73	Purified	0.5 mg
554956	anti-rat νδ TCR*	V65	Purified	0.5 mg

*Please see the BD Biosciences catalog or website for mAb to activate T cells bearing specific TCR V α , β , γ , or δ chains.

Reagents for the study of CD28 family receptors and B7 family ligands in the rat

554992	anti-rat CD28	JJ316	NA/LE	0.5 mg
554993	anti-rat CD28	JJ319	NA/LE	0.5 mg
559982	anti-rat CD28	JJ319	Purified	0.1 mg
550973	anti-rat CD28	JJ319	FITC	0.1 mg
559984	anti-rat CD28	JJ319	PE	0.1 mg
555012	anti-rat CD80 (B7-1)	3H5	Purified	0.5 mg
555013	anti-rat CD80 (B7-1)	3H5	Biotin	0.5 mg
555014	anti-rat CD80 (B7-1)	3H5	PE	0.2 mg
555015	anti-rat CD86 (B7-2))	24F	NA/LE	0.5 mg
555016	anti-rat CD86 (B7-2))	24F	Purified	0.5 mg
555017	anti-rat CD86 (B7-2))	24F	Biotin	0.5 mg
555018	anti-rat CD86 (B7-2))	24F	FITC	0.5 mg
551396	anti-rat CD86 (B7-2))	24F	PE	0.1 mg

Reagents for TCR-mediated activation of human T lymphocytes

555329	anti-human CD3	UCHT1	NA/LE	0.5 mg
555330	anti-human CD3	UCHT1	Purified	0.1 mg
555336	anti-human CD3	HIT3a	NA/LE	0.5 mg
555337	anti-human CD3	HIT3a	Purified	0.1 mg
354725	Human anti-CD3 T-Cell Activation Plates	UCHT1	NA/LE	5 plates
555546	anti-human $lphaeta$ TCR*	T10B9.1A-31	Purified	0.1 mg

*Please see the BD Biosciences catalog or website for mAb to activate T cells bearing specific TCR V α , β , γ , or δ chains.

Reagents for the study of CD28 family receptors and B7 family ligands in the human

340975	anti-human CD28 for immunohistochemistry	L293	Purified	0.2 mg
348040	anti-human CD28	L293	Purified	0.5 mg
348047	anti-human CD28	L293	PE	100 tests
555725	anti-human CD28	CD28.2	NA/LE	0.5 mg
555726	anti-human CD28	CD28.2	Purified	0.1 mg
555727	anti-human CD28	CD28.2	Biotin	100 tests
555728	anti-human CD28	CD28.2	FITC	100 tests
555729	anti-human CD28	CD28.2	PE	100 tests
555730	anti-human CD28	CD28.2	Cy-Chrome™	100 tests
559770	anti-human CD28	CD28.2	APC	100 tests
550387	anti-human CD28 for immunohistochemistry	CD28.2	Purified	1 ml
340294	anti-human CD80	L307.4	PE	50 tests
555681	anti-human CD80 (BB1/B7-1)	BB1	Purified	0.1 mg

557300

557301

Cat. No.	Description	Clone Name	Format	Size
Reagents for	r the study of CD28 family receptors and B7 family	ligands in the human (co	ntinued)	
555682	anti-human CD80 (BB1/B7-1)	BB1	Biotin	100 tests
555683	anti-human CD80 (BB1/B7-1)	BB1	FITC	100 tests
556058	anti-human CD80 (BB1)	L307.4	NA/LE	0.5 mg
557223	anti-human CD80 (BB1)	L307.4	Purified	0.1 mg
557225	anti-human CD80 (BB1)	L307.4	Biotin	100 tests
557226	anti-human CD80 (BB1)	L307.4	FITC	100 tests
557227	anti-human CD80 (BB1)	L307.4	PE	100 tests
59370	anti-human CD80 (BB1)	L307.4	Cy-Chrome	100 tests
555655	anti-human CD86 (B70)	2331(FUN-1)	Purified	0.1 mg
55656	anti-human CD86 (B70)	2331(FUN-1)	Biotin	100 tests
555657	anti-human CD86 (B70)	2331(FUN-1)	FITC	100 tests
555658	anti-human CD86 (B70)	2331(FUN-1)	PE	100 tests
55659	anti-human CD86 (B70)	2331(FUN-1)	Cv-Chrome	100 tests
55660	anti-human CD86 (B70)	2331(FUN-1)	APC	100 tests
55662	anti-human CD86 (B70)	IT2.2	NA/LE	0.5 mg
55663	anti-human CD86 (B70)	IT2.2	Purified	0.1 mg
55664	anti-human CD86 (B70)	IT2.2	Biotin	100 tests
55665	anti-human CD86 (B70)	IT2.2	PE	100 tests
55666	anti-human CD86 (B70)	IT2.2	Cv-Chrome	100 tests
55850	anti-human CD152 (CTLA-4)	BNI3.1	NA/LE	0.5 mg
55851	anti-human CD152 (CTLA-4)	BNI3.1	Purified	0.1 mg
55852	anti-human CD152 (CTLA-4)	BNI3.1	Biotin	100 tests
55853	anti-human CD152 (CTLA-4)	BNI3.1	PE	100 tests
55854	anti-human CD152 (CTLA-4)	BNI3.1	Cv-Chrome	100 tests
55855	anti-human CD152 (CTLA-4)	BNI3.1	APC	100 tests
50405	anti-human CD152 for immunohistochemistry	BNI3.1	Purified	1 ml
Regrents for	r TCR-mediated activation of non-human primate T	Ivmphocytes		
ETAGENTIS TOT	anti human CD2a	sp24		0.5 mg
557052	anti-human CD2a	5534	Burified	0.5 mg
			·	0.1 mg
keagents for	r the study of CD28 family receptors and b/ family	ingands in the non-numai	n primate	
56620	anti-human CD28	CD28.2	Purified	0.1 mg
56621	anti-human CD28	CD28.2	FITC	50 tests
56622	anti-human CD28	CD28.2	PE	50 tests
57146	anti-human CD80 (BB1)	L307.4	NA/LE	0.1 mg
57147	anti-human CD80 (BB1)	L307.4	PE	50 tests
57343	anti-human CD86 (B70)	2331(FUN-1)	FITC	50 tests
557344	anti-human CD86 (B70)	2331(FUN-1)	PE	50 tests

All reagents are for Research Use Only, not to be used in diagnostic or therapeutic procedures.

anti-human CD152 (CTLA-4)

anti-human CD152 (CTLA-4)

Purified

PE

0.1 mg

50 tests

BNI3.1

BNI3.1

Immunohistochemistry in Neuroscience Research

By Padma Kodukula, Xiaokun Xiao, Xiang Dong Ji, and Joseph Voland

22

Modern studies in the functional organization of complex neuronal networks have facilitated our understanding of brain function. Many tools such as electron microscopy, immunofluorescence, confocal microscopy, immunohistochemistry, *in-situ* hybridization and use of tracers have contributed to our understanding of brain circuitry and how these interconnections correlate with brain function.

Immunohistochemistry is a powerful technique that allows the detection of neuronal connections in relation to the complete architecture of the brain. 25-30 μ m freefloating brain sections are routinely used for this purpose, however, they often present researchers with several disadvantages including sub-optimal staining and poor morphology. In addition, the free floating brain sections staining technique requires large amounts of antibody and long incubation times. While microwave, formalin or paraformaldehyde fixation techniques have been used to facilitate immunohistochemical staining on paraffin embedded brain sections, many antibodies lose reactivity upon fixation with these techniques.

The Immunopathology department at BD Biosciences has developed an IHC Zinc fixative (Formalin-free) (Cat. No. 550523) for immunohistochemical staining, and we have now extended the use of this fixative to include our neuroscience antibodies. The morphology obtained is superior to that of free-floating sections and the Zinc fixative helps retain sample antigenicity. Over 80% of our portfolio of neuroscience antibodies from BD Biosciences Pharmingen and Transduction Laboratories work in our Zinc fixative, thus providing the researcher with a faster, easier, and more effective method of performing IHC staining in neural tissues. Detailed protocols and a complete line of secondary antibodies, isotype controls, and detection systems are available to perform immunohistochemical staining. In addition, we also have a large portfolio of antibodies to lymphoid markers, in human, mouse and rat, which are validated for use with our zinc fixative, allowing the simultaneous detection of both neuronal subtypes and inflammatory infiltrates in the same section.

In conclusion, BD Biosciences has a portfolio of more than 500 antibodies for the neuroscience researcher. Our new immunohistochemical staining technique utilizing Zinc-fixed 5 μ m paraffin-embedded brain sections offers several advantages:

- Ease of Use
- Lower Amounts of Antibody Required
- Yields Superior Morphology
- Supported by a Complete Line of Ancillary Reagents

References

- Evers P, Uylings HB, Suurmeijer AJ. Antigen retrieval in formaldehyde-fixed human brain tissue. Methods 1998 15:133-40
- Van Dorp R, Boon ME, Kok PG, Marani E. Combining microwave stabilization and microwave-stimulated fixation of brain tissue with microwave-stimulated staining. Eur J Morphol 1995 33:164-73
- Todd AJ. A method for combining confocal and electron microscopic examination of sections processed for double- or triplelabelling immunocytochemistry. J Neurosci Methods 1997; 73:149-57
- Login GR, Dvorak AM. Application of microwave fixation techniques in pathology to neuroscience studies: a review. J Neurosci Methods 1994; 55:173-82
- Hajos F, Garthwaite J, Garthwaite G, Csillag A Morphology of supravital brain slices pre-incubated in a physiological solution prior to fixation. Acta Morphol Hung 1989; 37:181-99

Figure 1. Glutamate Receptor 1 α staining on normal rat cerebellum with free floating sections (A) and zinc fixed paraffin tissue (B). *Magnification 10X (left), 100X (right)*.

Acetylcholinesterase, rat cerebrum

Gephyrin, rat cerebellum

23

Synaptogrin, rat cerebrum

Clathrin heavy chain, rat cerebrum

Figure 2. Additional neuronal markers on normal zinc fixed paraffin embedded brain.

IHC Antibodies for Neuroscience Research Product List

Cat. No.	Specificity	Clone	lsotype
550523	IHC Zinc Fixative (Formalin-free)		
610268	Acetylcholinesterase	46	Mouse IgG1
610450	АроЕ	32	Mouse IgG1
610452	B2 Bradykinin Receptor	20	Mouse IgG2b
610260	Calcineurin	29	Mouse IgG2a
611293	CaM Kinase II	45	Mouse IgG1
610276	CaM Kinase IV	26	Mouse IgG1
611339	Phospho-Caveolin (Y14)	56	Mouse IgG1
610500	Clathrin Heavy Chain	23	Mouse IgG1
610204	Cox-2	33	Mouse IgG1
556313	Dopamine b-hydroxylase	DBH 41	Mouse IgG1
610246	Dynamin	41	Mouse IgG1
610264	Dynamin II	27	Mouse IgG2a
610675	Dyrk	106	Mouse IgG1
610781	Dystrobrevin	38	Mouse IgG1
610124	ERK (pan ERK)	16	Mouse IgG2a
610031	ERK1	MK12	Mouse IgG1
610104	ERK2	33	Mouse IgG2b
610585	Gephyrin	45	Mouse IgG1
556389	Glutamate Receptor (mGluR1a)	G209-2048	Mouse IgG1
556331	Glutamate Receptor (mGluR1a)	G209-488	Mouse IgG1
610518	Glutamine Synthetase	6	Mouse IgG2a
610202	GSK-3b	7	Mouse IgG1
610327	Jun	3	Mouse IgG2a
610693	Mena	21	Mouse IgA
611029	Mint1	23	Mouse IgG1
611033	Mint2	18	Mouse IgG1
610337	Munc18	31	Mouse IgG1
556309	Nestin	Rat 401	Mouse IgG1
610372	Neuronal Pentraxin	Polyclonal	Rabbit Ig
610777	Ninjurin	50	Mouse IgG2a
610309	nNOS/NOS Type 1	16	Mouse IgG2a
610474	p150Glued	1	Mouse IgG1
610863	Pax-5	24	Mouse IgG1
610398	PKC d	14	Mouse IgG2b
610086	PKC e	21	Mouse IgG2a
610556	PP2A Catalytic a	46	Mouse IgG1
610549	PYK2 (CAK b)	11	Mouse IgG1
610178	RACK1	20	Mouse IgM
556326	Serotonin Receptor 5-HT2AR	G186-1117	Mouse IgG1
610647	SMN	8	Mouse IgG1
610667	Synapsin IIa	1	Mouse IgG1
610598	Synaptogyrin	6	Mouse IgG1
610636	Syntaxin 6	30	Mouse IgG1
556311	Tyrosine Hydroxylase	TOH A1	Mouse IgG1

25

HLDA Poster Now Available from BD Biosciences

The Official Poster of the 7th

International Workshop on

Human Leukocyte

Differentiation Antigens

(HLDA) is now available

from BD Biosciences.

The 8th HLDA meeting will be held in Australia in 2004.

For more information email hlda8.workshop@ adelaide.edu.au or visit http://www.hlda8.org/

NEW BD RiboQuant[™] Non-Rad Ribonuclease Protection Assay (RPA)

By Susan Chambers

26

Our NEW version of the BD RiboQuant[™] Ribonuclease Protection Assay (RPA) offers a non-radiolabeled approach to this powerful and versatile system. The Multi-Probe RPA system provides a highly sensitive and specific method of multiplex gene expression analysis, and has traditionally been performed using probes labeled by the incorporation of [32P]-UTP to provide optimal signal and sensitivity. By using our new kit to generate non-radiolabeled probes for multiprobe RPA, risks associated with exposure to radioactivity, environmental concerns and regulatory requirements are eliminated. With our non-radioactive kits, researchers can now choose which system best suits their needs.

The BD RiboQuant Multi-Probe RPA system is a well-established method to detect and quantitate up to 13 mRNA species simultaneously from a single sample of total RNA. The Multi-Probe RPA is made possible by generating a series of templates, each of a different length and each representing a sequence in a distinct mRNA species. The templates are assembled into biologically relevant sets and used for the T7 polymerase-directed synthesis of a high-specific-activity, biotin labeled, anti-sense RNA probe set. The probe set is then hybridized, in excess, to target RNA in solution. Following hybridization, free probe and other single-stranded RNA are digested with RNases. The remaining

The BD RiboQuant[™] Non-Rad RPA System includes:

"RNase-protected" probes are purified, resolved on denaturing polyacrylamide gels, then transferred to a positivelycharge nylon membrane. The membrane is probed and the signal quantified using Streptavidin-HRP and the enhanced chemiluminescent substrate provided in the kit. The membrane is exposed to x-ray film or a CCD camera and the level of each mRNA species in the original RNA sample is determined based on the intensity of the appropriately-sized, protected probe fragment (Figure 1).

Figure 1

Unparalleled Range of Specificities Available

We offer over 100 pre-assembled, biologically relevant multiprobe template sets and over 1000 specific templates from which to choose. We also offer custom template construction and/or assembly to meet your needs.

Multi-Probe Template SetsCat. No.BD RiboQuant Non-Rad In Vitro Transcription Kit*551917BD RiboQuant RPA Kit556134BD RiboQuant Non-Rad Detection Kit551918BD RiboQuant Non-Rad Starter Packaget551919

The BD RiboQuant Non-Rad In Vitro Transcription Kit is optimized for the efficient synthesis of high-specific-activity, biotin-labeled riboprobes from the BD PharmingenTM Multi-Probe Template Sets. Each kit contains sufficient reagents for 5 transcription reactions, yielding ~10 μ g biotin-labeled probe per reaction.

The BD RiboQuant Non-Rad Detection Kit includes 10 positively-charged nylon membranes and all reagents necessary for signal development using enhanced chemiluminescence.

- + Individual kits or sets of the system may be purchased separately or together, with one Multi-Probe Template Set of choice, as the BD RiboQuant Non-Rad RPA Starter Package, Cat. No. 551919.
- * Biotinylated nucleotides must be purchased separately. BD RiboQuant non-radioactive RPA has been optimized with biotin-16-UTP available from Roche Biosciences.

All protocols are described in the newest edition of the BD RiboQuant Instruction Manual.

BD RiboQuant[™] is a trademark of Becton, Dickinson and Company.

RPA was performed using 10 μ g total RNA from various cell populations: (Lane 3) untreated mouse spleen. (Lane 4) Purified CD4⁺ splenocytes stimulated with anti-mouse CD3 and anti-mouse CD28, plus purified mouse IL-2 and mouse IL-4, followed by restimulation with PMA + ionomycin. (Lane 5) 3-day thioglycolate-elicited peritoneal cells stimulated with purified mouse IFN- γ and LPS in the presence of a protein transport inhibitor. (For complete stimulation protocols, please refer to Cytokines/Chemokines Application Manual, 3rd ed., Pharmingen, June 1999, pp31-32.)

BD RiboQuant[™] Non-Rad In Vitro Transcription Kit (551917)

Reagent	Concentration	Volume	Reactions
5x Nucleotide Mix	5X (5 mM A,C,G 3.25 mM UTP)	16.5 μl	5
5x Transcription Buffer	5X	20 μl	5
DTT	100 mM	10 μl	5
Enzyme Mix (RNasin &	RNasin (40 U/ml)	10 μl	5
T7 RNA Polymerase)	T7 RNA Polymerase (20 U/ml)		
RNase-free DNase I	1 U/ml	10 μl	5
EDTA	20 mM	135 μl	5
Glycogen	5 mg / ml	5 μl	5
LiCl	4 M	2.7 ml	5 IVT, 200 RPA

BD RiboQuant[™] Non-Rad Detection Kit (551918)

Reagent	Volume	Reactions
Nylon Membrane		10
Hybridization Buffer	100 ml	10
Hybridization Stringency Wash Buffer	300 ml	10
Membrane Blocking Buffer	400 ml	10
Wash Buffer (4X)	400 ml	10
Substrate Equilibration Buffer	400 ml	10
Streptavidin-Horseradish Peroxidase	1.5 ml	10
Stable Peroxide Buffer	50 ml	10
Luminol / Enhancer	50 ml	10

NEW Products Available Since the 2001/2002 BD Biosciences Catalog

Cat No.	Description	Clone	Format	Size
Cell Biology	Reagents			
551456	Acinus	Rabbit pAb	Purified	100 ul
551150	Act Casp-3 Poly (PAb CM1)		Serum	100 ul
551429	AIF (Apoptosis-Inducing Factor)	Rabbit pAb	Purified	100 µl
612082	α-Methylacyl-CoA Racemase	15	Purified	50 µg
612083	α-Methylacyl-CoA Bacemase	15	Purified	150 ug
550651	Aguaporin 1	Rabbit pAb	Purified	50 ul
550650	Aquaporin 1	Rabbit pAb	Purified	200 ul
550649	Aquaporin 2	Rabbit pAb	Purified	50 ul
550648	Aquaporin 2	Rabbit pAb	Purified	200 ul
550647	Aquaporin 3	Rabbit pAb	Purified	50 ul
550646	Aquaporin 3	Rabbit pAb	Purified	200 ul
612072	ASAP1	19	Purified	50 ug
612073	ASAP1	19	Purified	150 ug
551432	BACE (β-site APP Cleaving Enzyme)	Rabbit pAb	Purified	100 ul
612110	BAF47	25	Purified	50 ug
612111	BAF47	25	Purified	150 ug
612112	Beclin	20	Purified	50 ug
612113	Beclin	20	Purified	150 ug
551283	Blys/BAFF		Purifed	200 µl
550719	Ca2+channel α1A		Purified	200 µl
550717	Ca2+channel α1B		Purified	200 µl
550715	Ca2+channel α1C		Purified	200 µl
550711	Ca2+channel α1D		Purified	200 µl
550709	Ca2+channel α1E		Purified	200 µl
550705	Ca2+channel Ca β3		Purified	200 µl
550703	Ca2+channel Caγ3		Purified	200 µl
550706	Ca2+channel Ca-β-3		Purified	50 µl
550704	Ca2+channel Ca-γ-2		Purified	50 µl
550716	Ca2+channel CaV1.2		Purified	50 µl
550712	Ca2+channel CaV1.3		Purified	50 µl
550720	Ca2+channel CaV2.1		Purified	50 µl
612130	E-Cadherin	36	FITC	50 ug
612131	E-Cadherin	36	FITC	150 ug
611786	Human Carcinoma I Lysate Kit		Lysate	1 Kit
551241	Caspase-7	11-1-56.1	Purified	150 ug
551240	Caspase-7	11-1-56.1	Purified	50 ug
551239	Caspase-7	10-1-62.1	Purified	150 µg
551237	Caspase-7	8-1-47.1	Purified	150 µg
551243	Caspase-8	3-1-9.1.1	Purified	150 µg
551245	Caspase-8	4-1-20.1	Purified	150 µg
551247	Caspase-9	Z-ZZ. I	Purified	150 µg
551430	Caspase-12	Rabbit pAb	Purified	100 ul
551443	Caspase-15		Purified	150 ug
5508/3	Caspase-14	/UA 1420	Purified	
551520		ANZ1.2	Purified	50 ug
2212Z7		ANZI.Z	Purified	150 ug
612074	Collin	56	Purified	50 ug
612075	Collubiation	50	Purified	150 ug
612076	Collybistin	3	Purified	50 ug
612077		<u> </u>	Purified	
612070		1	Durified	150 ug
551547		07 \ 101E	Furffied	50 ug
551547		97A1015		50 ug
611011		JAIUIJ		50 ug
5509/5			Durified	200 ul
6120945	B-Dystroalycan	56	Purified	50 ug
612090	ß Dystroglycan	56	Durified	150 ug
612114	ερι ΙΝ	20	Durified	50 ug
012114		20	Fuilled	50 ug

Cat No.	Description	Clone	Format	Size	
Cell Biology F	Reagents (continued)				
612115	EPLIN	20	Purified	150 ug	
551527	Fractin (Cleaved Actin)	Rabbit pAb	Purified	100 ul	
612092	GRASP55	21	Purified	50 ug	
612093	GRASP55	21	Purified	150 ug	
611872	HDJ-2	30	Purified	50 ug	
611873	HDJ-2	30	Purified	150 ug	
611886	Headpin	31	Purified	50 ug	
611887	Headpin	31	Purified	150 ug	
611888	Headpin	49	Purified	50 ug	
611889	Headpin	49	Purified	150 ug	
612066	HepG2+ IL-6 Ctrl Lysate		Lysate	500 ug	
612067	HepG2+IL-6 (15') Lysate		Lysate	500 ug	
612118	Hip1R	44	Purified	50 ug	
612119	Hip1R	44	Purified	150 ug	
551818	IKBα, Phospho-Specific	39A1413	Purified	50 ug	
612120	JAM-1	43	Purified	50 ug	
612121	JAM-1	43	Purified	150 ug	
550959	Jurkat Apoptotic Lysate Set I	Set	Lysate	1 mg	
550687	K+ Channel Kv1.2	Rabbit pAb	Purified	200 ul	
550685	K+ Channel Kv1.3	Rabbit pAb	Purified	200 ul	
550680	K+ Channel Kv1.6	Rabbit pAb	Purified	50 ul	
550679	K+ Channel Kv1.6	Rabbit pAb	Purified	200 ul	
550678	K+ Channel Kv2.1	Rabbit pAb	Purified	50 ul	
550677	K+ Channel Kv2.1	Rabbit pAb	Purified	200 ul	
550675	K+ Channel Kv3.1b	Rabbit pAb	Purified	50 ul	
550673	K+ Channel Kv3.1b	Rabbit pAb	Purified	200 ul	
550655	K+ Channel SK3	Rabbit pAb	Purified	50 ul	
550654	K+ Channel SK3	Rabbit pAb	Purified	200 ul	
550690	K+ Channel Kv1.1	Rabbit pAb	Purified	50 µl	
550689	K+ Channel Kv1.1	Rabbit pAb	Purified	200 µl	
550671	K+ Channel Kv3.2	Rabbit pAb	Purified	50 µl	
550670	K+ Channel Kv3.2	Rabbit pAb	Purified	200 µl	
550667	K+ Channel Kv4.2	Rabbit pAb	Purified	50 µl	
550666	K+ Channel Kv4.2	Rabbit pAb	Purified	200 µl	
612094	KIF1A	16	Purified	50 ug	
612096	KIF2	7	Purified	50 ug	
612097	KIF2	7	Purified	150 ug	
612080	ΜΑΡΚΑΡΚ-5	50	Purified	50 ug	
612081	ΜΑΡΚΑΡΚ-5	50	Purified	150 ug	
612100	Neurotensin Receptor 3	48	Purified	50 ug	
612101	Neurotensin Receptor 3	48	Purified	150 ug	
612098	NSP1	6	Purified	50 ug	
612099	NSP1	6	Purified	150 ug	
550871	Nucleosome	6E5	Purified	150 ug	
550779	Nucleosome	11E6	Purified	150 µg	
550699	Purinergic Receptor P2X1	Rabbit pAb	Purified	200µl	
550700	Purinergic Receptor P2X1	Rabbit pAb	Purified	50 µl	
550698	Purinergic Receptor P2X4	Rabbit pAb	Purified	50 µl	
550697	Purinergic Receptor P2X4	Rabbit pAb	Purified	200 µl	
550692	Purinergic Receptor P2Y4	Rabbit pAb	Purified	50 µl	
550691	Purinergic Receptor P2Y4	Rabbit pAb	Purified	200 µl	
551358	Purinergic Receptor PAK4	E440-883	Purified	50 ug	
550694	Purinergic Receptor P2X7	Rabbit pAb	Purified	50 ul	
550693	Purinergic Receptor P2X7	Rabbit pAb	Purified	200 ul	
551528	PARP (Cleavage Site-Specific)	Rabbit pAb	Purified	200 ul	
612084	Peroxiredoxin V	44	Purified	50 ug	
612085	Peroxiredoxin V	44	Purified	150 ug	
612102	Phosphatase Methylesterase-1	8	Purified	50 ug	
612103	Phosphatase Methylesterase-1	8	Purified	150 ug	

NEW Products from BD Biosciences (continued from page 29)

Cat No.	Description	Clone	Format	Size
Cell Biology I	Reagents (continued)			
551431	RAIDD/CRADD	Rabbit pAb	Purified	100 ul
612086	SCAMP1	22	Purified	50 ug
612087	SCAMP1	22	Purified	150 ug
612088	Selenocysteine Lyase	32	Purified	50 ug
612089	Selenocysteine Lyase	32	Purified	150 ug
612104	SGT1	29	Purified	50 ug
612105	SGT1	29	Purified	150 ug
551821	Smac/DIABLO	Rabbit pAb	Serum	100 ul
511816	Syk	4D10	Purified	50 ug
511817	Syk	4D10	Purified	150 ug
612122	TIP120	48	Purified	50 ug
612123	TIP120	48	Purified	150 ug
551357	TOAD-64	Rabbit pAb	Serum	100 ul
551316	TROP-1	162-21	Purified	0.1 mg
551317	TROP-2	162-46	Purified	0.1 mg
550701	TRPC1		Purified	200 µl
550702	TRPC1		Purified	50 µl
612106	Tubby	40	Purified	50 ug
612107	Tubby	40	Purified	150 ug
550944	Ubiquitin	6C1.17	Ascites	100 ul
612126	XPF	26	Purified	50 ug
612127	XPF	26	Purified	150 ug
612108	ZIP Kinase	17	Purified	50 ug
612109	ZIP Kinase	17	Purified	150 ug
612128	ZPR1	8	Purified	50 ug
612129	ZPR1	8	Purified	150 ug
Antibodies for 551403 551405	r Sandwich ELISA Rat anti-human sCD14 (ELISA Capture) Mouse anti-human sCD14 (ELISA Detection)	55-3 3-C39	Purified Biotin	0.5 mg
551388	Mouse anti-human sIL-1RI (ELISA Capture)	hIL-1R-M1	Purified	0.5 mg
551389	Mouse anti-human sIL-1RI (ELISA Detection)	hIL-1R-M8	Biotin	0.5 mg
550823	Mouse anti-pig IL-1β (ELISA Capture)	4B2.	Purified	0.5 mg
550824	Mouse anti-pig IL-1β (ELISA Detection)	6E8.10	Biotin	0.5 mg
550604	Hamster anti-mouse IL-1 α (ELISA Capture)	ALF-161	Purified	0.5 mg
550606	Rabbit anti-mouse IL-1 α (ELISA Detection)	Rabbit Ig	Biotin	0.5 mg
550605	Hamster anti-mouse IL-1 β (ELISA Capture)	B122	Purified	0.5 mg
550623	Rabbit anti-mouse IL-1 β (ELISA Detection)	Rabbit Ig	Biotin	0.5 mg
551309	Rat anti-mouse IFNγ (ELISA Capture)	AN-18	Purified	0.5 mg
551506	Rat anti-mouse IFN γ (ELISA Detection)	R4-6A2	Biotin	0.5 mg
552035	FUT-175 (Futhan) Protease Inhibitor for Complement Measurements	-		5 mg
Antibodies for	r Staining and Flow Cytometric Analysis	B120	Durified	0.1 mg
551087	Mouse anti-human ClqKp	R139 P120	Putified	0.1 mg
551531	Mouse anti-human Clapp	R139		0.1 mg
551509	Mouse anti-human ClqRp	K139	Burified	0.1 mg
551454	Mouse anti-human ClqRp	<u>د</u> م	Piotin	100 tortr
552022	Pat anti human CYCP5	DEQDO	Biotin	
552052	Rat anti-human CYCP5	RESR2	Biotin	100 tests
55128/	Mouse anti-human GM (SEPa	hGMCSED M1	Purified	0.5 mg
551/17	Mouse anti-human GM CSEPa		Biotin	0.5 mg
551373	Mouse anti-human GM CSEPa		DE	0.2 mg
551/62		M5	Purified	0.2 mg
551402		ME	Piotin	100 tosts
551051		ME	DIOLIN	
UCOLCC	wouse anti-numan il-ora	CIVI	FC	100 (63)3

Cat No.	Description	Clone	Format	Size
Cytokine and Ch	nemokine Reagents (continued)			
Antibodies for St	taining and Flow Cytometric Analysis (contra	inued)		
551894	Mouse anti-human II -4Rα	hll 4R-M57	Purified	0.1 mg
552120	Mouse anti-human IL-4Rα	hIL4R-M57	Biotin	100 tests
550900	Mouse anti-human TNFRI	MABTNFR1-B1	Biotin	0.5 mg
551359	Mouse anti-human TNFR Related Protein (LTbR)	hTNFR-RP-M12	Purified	0.5 mg
551861	Mouse anti-human TNFR Related Protein (LTbR)	hTNFR-RP-M12	Biotin	100 tests
551503	Mouse anti-human TNFR Related Protein (LTbR)	hTNFR-RP-M12	PE	0.2 mg
551311	Rat anti-human TNFRII	hTNFR-M1	Purified	0.5 mg
551964	Mouse anti-human Toll-like receptor 4	HTA125	Purified	0.1 mg
551975	Mouse anti-human Toll-like receptor 4	HTA125	Biotin	100 tests
552034	Mouse anti-human Toll-like receptor 4	HTA125	PE	100 tests
552033	Mouse anti-human Toll-like receptor 1	GD2	Purified	0.1 mg
551961	Rat anti-mouse CXCR5	2G8	Purified	0.1 mg
551960	Rat anti-mouse CXCR5	2G8	Biotin	0.1 mg
551959	Rat anti-mouse CXCR5	2G8	PE	0.1 mg
551852	Rat anti-mouse CXCR4	2B11/CXCR4	Purified	0.1 mg
551968	Rat anti-mouse CXCR4	2B11/CXCR4	Biotin	0.1 mg
551966	Rat anti-mouse CXCR4	2B11/CXCR4	PE	0.1 mg
551967	Rat anti-mouse CXCR4	2B11/CXCR4	FITC	0.1 mg
551970	Rat anti-human CXCR4	1D9	Biotin	100 tests
551853	Rat anti-mouse IL-4R	IL4R-M1	Purified	0.1 mg
551455	Mouse anti-mouse IL-12Rβ1	114	Purified	0.5 mg
551973	Mouse anti-mouse IL-12 Rβ1	114	Biotin	0.1 mg
551974	Mouse anti-mouse IL-12 Rβ1	114	PE	0.1 mg
551074	Mouse IgG2a isotype control	G155-178	Biotin	0.25 mg
Antibodies for B	ioassay and Functional Studies (No Azide/L	low Endotoxin)		
552052	Mouse anti-human CD14	3-039	NA/LE	0.5 mg
552052	Mouse anti-human GM-CSERg	hGMCSER-M1		0.5 mg
551795	Mouse anti-human IEN-a	7N4-1	NA/LE NA/LE	0.5 mg
551963	Mouse anti-human Toll-like recentor 4	ΗΤΔ125	NA/LE	0.5 mg
557538	Hamster anti-mouse II -1R1	lama-141	NA/I F	0.25 mg
550877	Mouse anti-rabbit II -8	203	NA/I F	0.5 mg
BD OptEIA [™] C	L ELISA Kits (Chemiluminescent)	-9-		
551794	Human II -2 Chemiluminescent Kit		Kit	1 plate
551501	Human IEN-v Chemiluminescent Kit		Kit	1 plate
551502	Human TNF-α Chemiluminescent Kit		Kit	1 plate
BD OptEIA [™] El	LISA Kits (Colorimetric)			
550947	Human C4a-desArg		Kit	1 plate
550611	Human IL-2 Kit II		Kit	2 plates
550614	Human IL-4 Kit II		Kit	2 plates
550949	Human IL-5 Kit II		Kit	2 plates
550799	Human IL-6 Kit II		Kit	2 plates
550999	Human IL-8 Kit II		Kit	2 plates
550613	Human IL-10 Kit		Kit	2 plates
550801	Mouse IL-2 Kit		Kit	2 plates
550997	Mouse IL-5 Kit		Kit	2 plates
550950	Mouse IL-6 Kit		Kit	2 plates
551423	Mouse IL-12 p40 Kit		Kit	2 plates
BD OptEIA [™] Se	ets (Colorimetric)			
550926	Human IP-10 Set		Set	Rgts for 20 plates
551424	Human sICAM-1 Set		Set	Rgts for 20 plates
550995	Human TNF-β Set		Set	Rgts for 20 plates
550996	Human TNFRI Set		Set	Rgts for 20 plates
550948	Human TRAIL Set		Set	Rgts for 20 plates

Clontech • Discovery Labware • Immunocytometry Systems • Pharmingen

NEW Products from BD Biosciences (continued from page 31)

Cat No.	Description	Clone	Format	Size
BD OptEIA ^T	M Sets (Colorimetric) (continued)			
551/02	Monkov IEN v Sot		Sot	Pate for 20 plates
551492	Monkey II. 2 Set		Set	Rgts for 20 plates
551494	Monkey IL-2 Set		Set	Rgts for 20 plates
551495	Monkey IL-4 Set		Set	Rgts for 20 plates
551490	Monkey TNE v Set		Set	Rgts for 20 plates
551493 EE1966	Mourse JEN & Set (AN 18)		Set	Rgts for 20 plates
551000	Mouse MIP 1b Set		Set	Rgts for 20 plates
559/55	Det II C Set		Set	Rgts for 20 plates
Non-Human	Primate Reagents		Set	Rgts for 20 plates
551466	CD4/CCR5	M-T477/349	Multicolor	50 test
551/65	CD4/CXCB4	M-T477/12G5	Multicolor	50 test
551405		DDA T9/2A0	Multicolor	50 test
551/69		PDA T9/12C5	Multicolor	50 test
551/67		MODC 21/C155 179	Multicolor	50 test
551467	migG1/migG2a	G155 179/G155 179	Multicolor	50 test
551404	Mouse anti human CD621	SK11 (lou9)		50 test
557541		5KTT (IEUO)		50 test
Human Cell	Surface Reagents	E34-731	FIIC	SU test
551082	Mouse anti-human β7 integrin	FIB504	APC	100 tests
551059	Mouse anti-human β7 integrin	FIB504	Cy-Chrome	100 tests
551337	Mouse anti-human β 2-microglobulin	TÜ99	PE	100 tests
551340	Mouse anti-human Bcl-10	151	Purified	0.1 mg
550796	Mouse anti-human CD3	UCHT1	PerCP-Cy5.5	0.1 mg
550788	Mouse anti-human CD4	RPA-T4	PerCP-Cy5.5	0.1 mg
550791	Mouse anti-human CD8	RPA-T8	PerCP-Cv5.5	0.1 mg
551131	Mouse anti-human CD11a/LFA-1	HI111	Cv-Chrome	100 tests
550787	Mouse anti-human CD14	M5E2	PerCP-Cv5.5	0.1 mg
551060	Mouse anti-human CD18	6.7	APC	100 tests
550789	Mouse anti-human CD19	HIB19	PerCP-Cv5.5	0.1 mg
551064	Mouse anti-human CD21	B-lv4	Cv-Chrome	100 tests
551444	Mouse anti-human CD34	581	PerCP-Cv5.5	0.1 mg
551141	Mouse anti-human CD42b	HIP1	Cv-Chrome	100 tests
550988	Mouse anti-human CD44	515	Purified	0.1 mg
551140	Mouse anti-human CD49f	GoH3	APC	100 tests
550813	Mouse anti-human Cw60	UM-4D4	FITC	100 tests
551374	Mouse anti-human CD71	M-A712	APC	100 tests
551134	Mouse anti-human CD79a	HM47	APC	100 tests
551063	Mouse anti-human CD79b	CB3-1	Cv-Chrome	100 tests
550955	Mouse anti-human CD79b	CB3-1	APC	100 tests
551112	Mouse anti-human CD81	JS-81	APC	100 tests
551053	Mouse anti-human CD85	GH1/75	PF	100 tests
551054	Mouse anti-human CD85	GHI/75	Cv-Chrome™	100 tests
551081	Mouse anti-human CDw128	5A12	Cv-Chrome™	100 tests
551137	Mouse anti-human CDw137	4B4-1	Cy-Chrome	100 tests
551902	Mouse anti-human CD138	Mi15	Purified	0.1 mg
551146	Mouse anti-human CD106	51-1009	FITC	100 tests
551148	Mouse anti-human CD106	51-10C9	Cv-Chrome™	100 tests
551138	Mouse anti-human CD161 (NKR-P1A)	DX12	Cy-Chrome	100 tests
551312	Mouse anti-human c-Mpl	BAH-1	Purified	0.1 mg
551313	Mouse anti-human c-Mpl	BAH-1	PF	100 tests
551314	Mouse anti-human c-Mpl	BAH-1	APC	100 tests
550951	Mouse anti-human Cytokeratin 14 15 16 and 19	KA4	Purified	0.1 mg
551264	Mouse anti-human DC-SIGN	DCN46	FITC	100 tests
551265	Mouse anti-human DC-SIGN	DCN46	PF	100 tests
551796	Mouse anti-human fetal hemoglohin	2012	Purified	0.1 mg
551797	Mouse anti-human fetal hemoglobin	2012	PF	100 tests
551285	Mouse anti-human HI A-A2	BB7.2	FITC	0.1 mg
551205		207.2		

Cat No.	Description	Clone	Format	Size			
Human Cell Surf	Human Call Surface Descents (continued)						
	Ace Reagents (continueu)		4.5.5	100			
551127	Mouse anti-human IL-8 RB	666	APC	100 tests			
551136	Mouse anti-human mannose Receptor	19.2	Cy-Chrome ^{IM}	100 tests			
550935	Mouse anti-numan µ-Calpain	B27D8	Purified	0.1 mg			
550936	Mouse anti-human µ-Calpain	B27D8	PE	100 tests			
551056	Mouse anti-human PRR2	R2.525	Purified	0.1 mg			
551057	Mouse anti-numan PRR2	K2.525	PE	100 tests			
551292	Mouse anti-human IAP2	TAP2.17	Purified	0.1 mg			
550/95	Mouse IgG1, kappa isotype control	MOPC-21	PerCP-Cy5.5	0.1 mg			
550915	IP30 FITC Set		FIIC	Set			
Ig/2nd Step Reag	ents						
551505 F(ab')2 Rat anti-mouse IgG (multiple adsorption)			Biotin	0.1 mg			
Immunohistochen	nistry Reagents						
550891	BrdU		Buffer	5 mg			
551249	Mouse anti-human DC-SIGN	DCN46	Purified	1 ml			
551320	Mouse anti-mouse follicular dendritic cell	FDC-M1	Purified	1 ml			
551004	Mouse anti-human MMP-7 (Matrilysin)	ID2	Purified	1 ml			
Cytometric Bead	Array Products						
551809	Human Th1/Th2 Cytokine Cytometric Bead Array (CBA) Kit - II (with IL-6)		Kit	50 tests			
551811	Human Inflammation Cytometric Bead Array (CBA) Kit		Kit	50 tests			
551810	Human Th1/Th2 Cytokine Standards		lyophilized	1 vial			
552124	Human Active Caspase-3 CBA		Kit	100 tests			
please inquire	Human Anaphylatoxin CBA		Kit	50 tests			
Mouse Cell Surfa	ce Reagents						
552051	Rat anti-mouse CD4 (L3T4)	GK1.5	APC-Cv7	0.1 mg			
552094	Rat anti-mouse CD45R/B220	RA3-6R2	APC-Cv7	0.1 mg			
552132	Non-Cytolytic Mouse CTLA-4 - JaG Fusion Protein		NA/I F	0.25 mg			
552133	Non-Cytolytic Mouse CTLA-4 - IgG Fusion Protein		NA/I F	0.5 mg			
551776	Rat anti-mouse Dendritic Cells	33D1	Purified	0.5 mg			
551771	Mouse anti-mouse DO-11 10 Clonotypic TCR	KI1-26	Purified	0.25 mg			
551772	Mouse anti-mouse DO-11.10 Clonotypic TCR	KI1-26	PF	0.1 mg			
551769	Hamster anti-mouse H-2M3	130	Purified	0.1 mg			
552015	Rat anti-mouse ICOS	7F 17G9	Purified	0.5 mg			
551864	Rat anti-mouse Lambda 5	1M34	Purified	0.1 mg			
551865	Rat anti-mouse Lambda 5	LM34	Riotin	0.1 mg			
552093	Rat anti-mouse Ly-6G (Gr-1) and Ly-6C	RB6-805	PorCP_Cv5 5	0.1 mg			
552055	Mouse anti-mouse Ly-49A BALB and B6	IR9-318	Purified	0.1 mg			
552013	Mouse anti-mouse Ly-49A BALB and B6	IR0_318	Riotin	0.1 mg			
551801	Hamster anti-mouse PD-1	113	Purified	0.1 mg			
551897	Hamster anti-mouse PD-1	1/12	DE	0.1 mg			
551092	Pat anti mouse Pro P Coll Pacantor	J45 CI 1EC	PL	0.1 mg			
551863	Rat anti-mouse Pre-B Cell Receptor	SL 156	Biotin	0.1 mg			
Pat Cell Surface Reagents							
Rat Cell Sufface Reagents							
551450	Mouse anti-rat CD5	HIS47	Purified	0.1 mg			
551449	Mouse anti-rat CD5	OX-19	FITC	0.1 mg			
551402	Mouse anti-rat CD45RA	OX-33	PE	0.1 mg			
551451	Mouse anti-rat CD45RC	OX-22	Purified	0.1 mg			
552011	Mouse anti-rat CD48	OX-45	Purified	0.1 mg			
551452	Mouse anti-rat CD53	OX-44	Purified	0.1 mg			
551398	Hamster anti-rat CD62L (L-selectin, LECAM-1)	HRL1	PE	0.1 mg			
551458	Mouse anti-rat CD63 (ME491)	AD1	Purified	0.1 mg			
551396	Mouse anti-rat CD86 (B7-2)	24F	PE	0.1 mg			
551401	Mouse anti-rat CD90 (Thy-1)	OX-7	PE	0.1 mg			

NEW Products from BD Biosciences (continued from page 33)

Cat No.	Description	Clone	Format	Size			
Rat Cell Surface	Reagents (continued)						
551/69	Mouse anti-rat High Affinity IgE recentor (EcsBI)	0.1 mg					
551770	Mouse anti-rat Mast Cells	ΔR32ΔΔ4	Purified	0.1 mg			
552012	Mouse anti-rat CD147	Purified	0.1 mg				
Pig Cell Surface I	Pig Cell Surface Reagents						
551543	Rat anti-pig vδ T Lymphocytes	Purified	0.1 mg				
551541	Mouse anti-pig CD5	b53b7	Purified	0.1 mg			
551507	Mouse anti-pig CD6	Purified	0.1 mg				
551508	Mouse anti-pig CD11a (Integrin α L chain)	BL2F1	Purified	0.1 mg			
please inquire	Mouse anti-pig CD11b (Integrin αM chain)	2F4/11	Purified	0.1 mg			
551542	Rat anti-pig CD44H (Pgp-1, Hermes antigen)	MAC329	Purified	0.1 mg			
please inquire	Mouse anti-pig CD45 (Leukocyte	2A5	Purified	0.1 mg			
	Common Antigen)			-			
551536	Mouse anti-pig CD45RC	3a56	Purified	0.1 mg			
please inquire	Mouse anti-pig CD46	JM6C11	Purified	0.1 mg			
551544	Mouse anti-pig CD235a (Glycophorin A)	1AC11	Purified	0.1 mg			
551537	Mouse anti-pig SLA-DR	1F12	Purified	0.1 mg			
551538	Mouse anti-pig SLA-DQ	BL4H2	Purified	0.1 mg			
Molecular Biolog	gy Reagents - BD RiboQuant [™] Multi-Probe	Template Sets					
Mouse Cell Cycle	e Regulator/Complement						
551490		10 reactions					
Mouse Angiogen	esis						
551418	mAngio-1 RiboQuant Multi-Probe Template Set		10 reactions				
Mouse Matrix M	letalloproteinase						
551276	mMMP-1 RiboQuant Multi-Probe Template Set			10 reactions			
550249	mMMP-2 RiboQuant Multi-Probe Template Set			10 reactions			
Mouse Developm	nental Gene						
550925	mWnt-1 RiboQuant Multi-Probe Template Set			10 reactions			
550249	mWnt-2 RiboQuant Multi-Probe Template Set			10 reactions			
Human Cytokine	es and Chemokines						
551787	hCK-8 RiboQuant Multi-Probe Template Set			10 reactions			
551488	hCK-9 RiboQuant Multi-Probe Template Set 10 reactions						
Human DNA Re	pair Pathway						
550251	hDisR RiboQuant Multi-Probe Template Set			10 reactions			
Human Matrix N	Aetalloproteinase						
551274	hMMP-1 RiboQuant Multi-Probe Template Set			10 reactions			
551275	hMMP-2 RiboQuant Multi-Probe Template Set			10 reactions			
Human Sulfotran	isterase						
550793	hTOX-1b RiboQuant Multi-Probe Template Set			10 reactions			
550794	hTOX-1 RiboQuant Multi-Probe Template Set			10 reactions			
Applicable Patent	5:						
		D. (C COT: and Canad	1 . D. ((N) 1 170 042			

PE and APC: US Patent No. 4,520,110; 4,859,582; 5,055,556. European Patent No. 76,695; and Canadian Patent No. 1,179,942 PerCP: US Patent No. 4,876,190 Cy5.5 and Cy7: US Patent No. 5,268,486; 5,486,616; 5,569,587; 5,569,766; and 5,627,027 APC-Cy7: US Patent No. 5,714,386

A Multiplex Bead System You Can Count On

BD Biosciences Pharmingen has added a new twist to counting with beads. We recognize the value of small, precious samples and data reproducibility so we've developed a technology to ensure just those things.

The innovative Cytometric Bead Array (CBA) technology allows for quantitative detection of multiple analytes. Choose from Human Th1/Th2 Cytokine (two formats), Mouse Th1/Th2 Cytokine, Human Inflammation, and Mouse Ig Isotyping kits. Anaphylatoxin and Active Caspase-3 kits coming soon.

Don't have a flow cytometer? Ask about our special offer for CBA customers.

The BD CBA system provides reproducible data and reliable performance you can count on.

- get more results from a single small volume sample
- run one standard curve for all your analytes
- avoid artifacts associated with enzyme dependent signal generation
- achieve quantitative results with less time and labor
- use a complete system with ready-to-use kits and analysis software

Call for the latest updates or visit http://www.bdbiosciences.com/ pharmingen/CBA/

BD Biosciences

Clontech Discovery Labware Immunocytometry Systems Pharmingen

BD Biosciences Pharmingen Visit **www.bdbiosciences.com**. Call **877.232.8995** (in the USA) to order. For research use only. Not for use in diagnostic or therapeutic procedures. Not for Resale. BO, BD Logo and all other trademarks are the property of Becton, Dickinson and Company. ©2001 BD

Where We'll Be in Winter 2001/2002							
When	What					Where	
2001							
December 6	University of Pennsylvania, Vendor Show			Philadelphia, PA			
December 7	Georgetown University, Vendor Show			Washington, DC			
December 7 - 11	American Society of Hematology (ASH)			Orlando, FL			
December 8 - 12	American Society for Cell Biolo	gy (ASCB) 2001				Washington, DC	
2002							
January 10	University of California, San Francisco, Vendor Show			San Francisco, CA			
January 30	University of Texas, Vendor Sho	w				Houston, TX	
February 25 - 28	Baculovirus & Insect Cell Cultur	е				Santa Fe, NM	
March 17 - 21	SOT - Society of Toxicology					Nashville, TN	
		🛛 💿 BD Biosci	ences : Home				
Address: 🔘 http://	www.bdbiosciences.com/						
							-
	Clontech			Searc	h the Site		GO)
	Discovery Labware Immunocytometry Systems			» ADVAN	CED SEARCH	SITEMAP	
	Pharmingen	Home Abo	ut eCatalog	Services	Support	How to Order	
BD Biosciences >					N	lovember 29, 2001	
	PD Diagoi	i h					
	(Becton, Di	ickinson and Com	any) and is built o	in	igional web anada	sites	
bioscien							
For ordering information and technical services Or visit our website at							
please contact your local BD Biosciences office. www.bdbiosciences.com							
					.0		
						711	J.

Edited by Dara Grantham Wright; Designed by Azita Zarrabi

For Research Use Only. Not for use in diagnostic or therapeutic procedures. Not for resale.

BD Biosciences

Clontech Discovery Labware Immunocytometry Systems Pharmingen

